Energy-efficient control of electric vehicles based on linear quadratic regulator and phase plane analysis

2018 ◽  
Vol 213 ◽  
pp. 639-657 ◽  
Author(s):  
Zhongliang Han ◽  
Nan Xu ◽  
Hong Chen ◽  
Yanjun Huang ◽  
Bin Zhao
2021 ◽  
Vol 90 ◽  
pp. 203-204
Author(s):  
C. Rodrigues ◽  
M. Correia ◽  
J. Abrantes ◽  
B. Rodrigues ◽  
J. Nadal

2012 ◽  
Vol 2012 (04) ◽  
pp. P04004 ◽  
Author(s):  
Vandana Yadav ◽  
Rajesh Singh ◽  
Sutapa Mukherji

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Fanfan Chen ◽  
Dingbian Qian ◽  
Xiying Sun ◽  
Yinyin Wu

<p style='text-indent:20px;'>We prove the existence and multiplicity of subharmonic solutions for bounded coupled Hamiltonian systems. The nonlinearities are assumed to satisfy Landesman-Lazer conditions at the zero eigenvalue, and to have some kind of sublinear behavior at infinity. The proof is based on phase plane analysis and a higher dimensional version of the Poincaré-Birkhoff twist theorem by Fonda and Ureña. The results obtained generalize the previous works for scalar second-order differential equations or relativistic equations to higher dimensional systems.</p>


2011 ◽  
Vol 403-408 ◽  
pp. 3758-3762
Author(s):  
Subhajit Patra ◽  
Prabirkumar Saha

In this paper, two efficient control algorithms are discussed viz., Linear Quadratic Regulator (LQR) and Dynamic Matrix Controller (DMC) and their applicability has been demonstrated through case study with a complex interacting process viz., a laboratory based four tank liquid storage system. The process has Two Input Two Output (TITO) structure and is available for experimental study. A mathematical model of the process has been developed using first principles. Model parameters have been estimated through the experimentation results. The performance of the controllers (LQR and DMC) has been compared to that of industrially more accepted PID controller.


Sign in / Sign up

Export Citation Format

Share Document