A novel approach based on integration of convolutional neural networks and deep feature selection for short-term solar radiation forecasting

2022 ◽  
Vol 305 ◽  
pp. 117912
Author(s):  
Hakan Acikgoz
2017 ◽  
Vol 190 ◽  
pp. 1245-1257 ◽  
Author(s):  
Cong Feng ◽  
Mingjian Cui ◽  
Bri-Mathias Hodge ◽  
Jie Zhang

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2381
Author(s):  
Jaewon Lee ◽  
Hyeonjeong Lee ◽  
Miyoung Shin

Mental stress can lead to traffic accidents by reducing a driver’s concentration or increasing fatigue while driving. In recent years, demand for methods to detect drivers’ stress in advance to prevent dangerous situations increased. Thus, we propose a novel method for detecting driving stress using nonlinear representations of short-term (30 s or less) physiological signals for multimodal convolutional neural networks (CNNs). Specifically, from hand/foot galvanic skin response (HGSR, FGSR) and heart rate (HR) short-term input signals, first, we generate corresponding two-dimensional nonlinear representations called continuous recurrence plots (Cont-RPs). Second, from the Cont-RPs, we use multimodal CNNs to automatically extract FGSR, HGSR, and HR signal representative features that can effectively differentiate between stressed and relaxed states. Lastly, we concatenate the three extracted features into one integrated representation vector, which we feed to a fully connected layer to perform classification. For the evaluation, we use a public stress dataset collected from actual driving environments. Experimental results show that the proposed method demonstrates superior performance for 30-s signals, with an overall accuracy of 95.67%, an approximately 2.5–3% improvement compared with that of previous works. Additionally, for 10-s signals, the proposed method achieves 92.33% classification accuracy, which is similar to or better than the performance of other methods using long-term signals (over 100 s).


2017 ◽  
Vol 2 ◽  
pp. 24-33 ◽  
Author(s):  
Musbah Zaid Enweiji ◽  
Taras Lehinevych ◽  
Аndrey Glybovets

Cross language classification is an important task in multilingual learning, where documents in different languages often share the same set of categories. The main goal is to reduce the labeling cost of training classification model for each individual language. The novel approach by using Convolutional Neural Networks for multilingual language classification is proposed in this article. It learns representation of knowledge gained from languages. Moreover, current method works for new individual language, which was not used in training. The results of empirical study on large dataset of 21 languages demonstrate robustness and competitiveness of the presented approach.


Sign in / Sign up

Export Citation Format

Share Document