Synergetic enhancement of heat storage density and heat transport ability of phase change materials inlaid in 3D hierarchical ceramics

2022 ◽  
Vol 306 ◽  
pp. 117995
Author(s):  
Qingyang Luo ◽  
Xianglei Liu ◽  
Haolei Wang ◽  
Qiao Xu ◽  
Yang Tian ◽  
...  
2011 ◽  
Vol 95 (4) ◽  
pp. 1213-1218 ◽  
Author(s):  
Xiaoxing Zhang ◽  
Pengfei Deng ◽  
Rongxiu Feng ◽  
Jian Song

2014 ◽  
Vol 536-537 ◽  
pp. 1477-1480 ◽  
Author(s):  
Dong Dong Wu ◽  
Hua Wang ◽  
Yong Gang Wei ◽  
Kong Zhai Li

Aluminum is supposed to be admirable phase change materials (PCMs) for thermal energy storage due to its excellent heat storage density and thermal conductivity. However, its application is limited because of the flowability and corrosivity when it melt. The Al/AlN-Al2O3composite PCMs with stable thermal energy storage performance were prepared by direct nitridation method. The research showed that nitridation temperature and nitridation time are key parameters of heat storage performance of the composite materials. The morphology and thermal energy storage performance and components of the Al/AlN-Al2O3composite PCMs were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD). The results showed that the tiny particles of aluminum powders were closely coated by AlN-Al2O3encapsulating materials. This structure can prevent the flowability of the liquid aluminum and also can avoid environmental impact when the it melt, meanwhile , the composite PCMs have the performance such as stability, high thermal storage density.


2009 ◽  
Vol 1188 ◽  
Author(s):  
Milka Markova Hadjieva ◽  
Metodi Bozukov ◽  
Ivan Gutzov

AbstractThe phase change materials (PCM) are known since years with high thermal storage capacity but with limited applications. The modified PCM mainly paraffin watery suspensions, so called PCM slurry, improve some PCM drawbacks (thermal conductivity) and as paraffin multifunctional fluids can work in both, heat transport and heat storage for cooling technology applications. The structural and thermophysical properties of two types PCM slurry were good basis for comparison of their efficiency: paraffin microcapsule slurry (A) and paraffin emulsion slurry (B), both working in temperature range of phase transition from 2-12 degreesC. The equipments as differential scanning calorimetry (DSC), model NETZSCH DSC 200 PC; scanning electron microscopy (SEM), JOEL model JSM-5510; hot stage optical microscopy, LINKAM model TMS 94 and hand made thermal cycling system operational with Danfoss cooling machine that ensured 2 kW cooling capacity at 40oC; gave accurate results, characterizing completely, from structural and thermal point of view both types of PCM multifunctional structured fluids. Structural stability of the advanced phase change multifunctional fluids was discussed on sample imaging in variable magnifications made by method of Hot Stage microscopy and precise SEM study. Systematization of the DSC results obtained, including temperature range of phase transition and thermal storage capacity, measured before and after repeatable thermal cycling of the PCM multifunctional fluids, allowed selection of the PCM slurry working samples with relatively high thermal capacity applicable to further development in prototypes. Heat absorbed/released, calculated by NETZSCH DSC software, was for PCM slurry A in the range of 80 to 82 kJ/kg, while PCM slurry B showed thermal storage capacity from 56 to 53 kJ/kg. Correlation between the structural properties and thermal storage capacity of the phase change multifunctional fluids led to practical conclusions concerning: homogeneity; crystal growth/conditions; structural compatibility between components; prediction of the heat flow behavior of multifunctional PCM slurries in cooling technology for storage and transport of heat.


Author(s):  
J. Martínez-Gómez ◽  
E. Urresta ◽  
D. Gaona ◽  
G. Guerrón

Esta investigación tiene como objetivo seleccionar un material de cambio de fase (PCM) que cumplen mejor la solución del almacenamiento de energía térmica entre 200-400 ° C y reducir el costo de producción. El uso de métodos multicriterios de toma de decisiones (MCMD) para la evaluación fueron proporcionales implementados como COPRAS-G, TOPSIS y VIKOR. La ponderación de los criterios se realizó por el método AHP (proceso analítico jerárquico) y los métodos de entropía. La correlación de los resultados entre los tres métodos de clasificación ha sido desarrollada por el coeficiente de correlación de Spearman. Los resultados ilustran el mejor y la segundo mejor opción para los tres MCDM fueron NaOH y KNO3. Además, tenía valores de correlación de Spearman entre los métodos excede de 0.714.


Author(s):  
Yuran Shi ◽  
Mihael Gerkman ◽  
Qianfeng Qiu ◽  
Shuren Zhang ◽  
Grace G. D. Han

We report the design of photo-responsive organic phase change materials that can absorb filtered solar radiation to store both latent heat and photon energy via simultaneous phase transition and photo-isomerization....


Molecules ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 241
Author(s):  
Raul-Augustin Mitran ◽  
Simona Ioniţǎ ◽  
Daniel Lincu ◽  
Daniela Berger ◽  
Cristian Matei

Phase change materials (PCMs) can store thermal energy as latent heat through phase transitions. PCMs using the solid-liquid phase transition offer high 100–300 J g−1 enthalpy at constant temperature. However, pure compounds suffer from leakage, incongruent melting and crystallization, phase separation, and supercooling, which limit their heat storage capacity and reliability during multiple heating-cooling cycles. An appropriate approach to mitigating these drawbacks is the construction of composites as shape-stabilized phase change materials which retain their macroscopic solid shape even at temperatures above the melting point of the active heat storage compound. Shape-stabilized materials can be obtained by PCMs impregnation into porous matrices. Porous silica nanomaterials are promising matrices due to their high porosity and adsorption capacity, chemical and thermal stability and possibility of changing their structure through chemical synthesis. This review offers a first in-depth look at the various methods for obtaining composite PCMs using porous silica nanomaterials, their properties, and applications. The synthesis and properties of porous silica composites are presented based on the main classes of compounds which can act as heat storage materials (paraffins, fatty acids, polymers, small organic molecules, hydrated salts, molten salts and metals). The physico-chemical phenomena arising from the nanoconfinement of phase change materials into the silica pores are discussed from both theoretical and practical standpoints. The lessons learned so far in designing efficient composite PCMs using porous silica matrices are presented, as well as the future perspectives on improving the heat storage materials.


2018 ◽  
Vol 157 ◽  
pp. 619-630 ◽  
Author(s):  
Qinghua Yu ◽  
Alessandro Romagnoli ◽  
Bushra Al-Duri ◽  
Danmei Xie ◽  
Yulong Ding ◽  
...  

2013 ◽  
Vol 683 ◽  
pp. 106-109
Author(s):  
Xiao Gang Zhao ◽  
Ying Pan

Phase change materials, abbreviated as PCM, due to the excellent heat storage performance, have been used as building materials and got more and more attention in recent years. The article introduce the building application of phase change material, and discuss its contribution to the building energy saving.


Sign in / Sign up

Export Citation Format

Share Document