An improved mesh stiffness model of helical gear pair considering axial mesh force and friction force influenced by surface roughness under EHL condition

Author(s):  
Siyu Wang ◽  
Rupeng Zhu
2021 ◽  
pp. 1-16
Author(s):  
Siyu Wang ◽  
Rupeng Zhu

Abstract Based on “slice method”, the improved time-varying mesh stiffness (TVMS) calculation model of helical gear pair with tooth surface wear is proposed, in which the effect of friction force that obtained under mixed elasto-hydrodynamic lubrication (EHL) is considered in the model. Based on the improved TVMS calculation model, the dynamic model of helical gear system is established, then the influence of tooth wear parameters on the dynamic response is studied. The results illustrate that the varying reduction extents of mesh stiffness along tooth profile under tooth surface wear, in addition, the dynamic response in time-domain and frequency-domain present significant decline in amplitude under deteriorating wear condition.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Song He ◽  
Rajendra Singh

An analytical solution to the dynamic transmission error of a helical gear pair is developed by using a single-degree-of-freedom model with piecewise stiffness functions that characterize the contact plane dynamics and capture the velocity reversal at the pitch line. By assuming a constant mesh stiffness density along the contact lines, a linear time-varying model (with parametric excitations) is obtained, where the effect of sliding friction is quantified by an effective mesh stiffness term. The Floquet theory is then used to obtain closed-form solutions to the dynamic transmission error, and responses are derived to both initial conditions and the forced periodic function under a nominal preload. Analytical models are validated by comparing predictions with numerical simulations, and the effect of viscous damping is examined. Stability analysis is also briefly conducted by using the state transition matrix. Overall, the sliding friction has a marginal effect on the dynamic transmission error of helical gears, as compared with spur gears, in the context of the torsional model.


2019 ◽  
Vol 72 (3) ◽  
pp. 333-340
Author(s):  
Mingyong Liu ◽  
Peidong Xu ◽  
Jinxi Zhang ◽  
Huafeng Ding

Purpose Power loss is an important index to evaluate the transmission performance of a gear pair. In some cases, the starved lubrication exists on the gear contact interface. The purpose of this paper is to reveal the mechanical power loss of a helical gear pair under starved lubrication. Design/methodology/approach A starved thermal-elastohydrodynamic lubrication (EHL) model is proposed to evaluate the tribological properties of a helical gear pair. The numerical result has been validated against the published simulation data. Based on the proposed model, the influence of thermal effect, working conditions, inlet oil-supply layer and surface roughness on the mechanical power loss and lubrication performance has been discussed. Findings Results show that the thermal effect has a significant effect on the tribological properties of helical gear pair, especially on mechanical power loss. For a specified working condition, there is an optimal oil supply for gear lubrication to obtain the state of full film lubrication. Meanwhile, it reveals that the mechanical power loss increases with the increase of the surface roughness amplitude. Originality/value In this paper, a starved thermal-EHL model has been developed for the helical gear pair based on the finite line contact theory. This model can be used to analyze the tribological properties of gear pair from full film lubrication to mixed lubrication. The results can provide the tribological guidance for design of a helical gear pair.


2021 ◽  
pp. 1-16
Author(s):  
Mingyong Liu ◽  
Yang Qu ◽  
Chenglong Hu ◽  
Enxi Deng

Abstract The tribological properties of gear interface have been widely concerned in the past decades. In this study, based on the local involute profile and crown modification, a thermal elastohydrodynamic lubrication model is proposed for a helical gear pair. To discuss the influences of dynamic load on the tribological properties of helical gear pair, the dynamic mesh force of tooth surface is obtained by torsional vibration model. The influences of working conditions and surface roughness on the tribological properties of helical gear pair are investigated. The tribological properties are evaluated in terms of the average film thickness, friction coefficient, mechanical power loss etc. Results show that the dynamic effect of gears has a significant effect on the tribological properties, especially at a specific speed, such as resonance speed. In order to simulation gear lubrication accurately, it is recommended to adopt local involute tooth profile and consider tooth profile modification to calculate geometric clearance. The influence of input rotation speed on the dynamic characteristics and tribological properties of gear is more significant than that of input torque. The surface roughness significantly changes the distribution of interface pressure and film thickness. With the increase of roughness amplitude, the local fluctuation amplitude of pressure and film thickness increase and the dry contact occurs at the end of contact line. Meanwhile, the maximum subsurface stress moves toward the tooth surface, especial for the high frequency engineering roughness. This local stress concentration is harmful to the fatigue life of gear meshing process.


Sign in / Sign up

Export Citation Format

Share Document