scholarly journals Composition and potential functional roles of soil fungal communities on arid farms in Arequipa (Southern Peru) characterized using SMRT sequencing

2022 ◽  
Vol 169 ◽  
pp. 104228
Author(s):  
A. Rodriguez-Sanchez ◽  
A. Tomasek ◽  
S. McMillan ◽  
S. Yufra ◽  
M. Yupanqui ◽  
...  
Author(s):  
Mario Matijasic ◽  
Tomislav Meštrović ◽  
Hana Čipčić Paljetak ◽  
Mihaela Perić ◽  
Anja Barešić ◽  
...  

The human microbiota is a diverse microbial ecosystem associated with many beneficial physiological functions, as well as numerous disease etiologies. Dominated by bacteria, the microbiota also includes commensal populations of fungi, viruses, archaea, and protists. Unlike bacterial microbiota, which was extensively studied in the past two decades, these non-bacterial microorganisms, their functional roles, and their interaction with one another or with host immune system have not been as widely explored. This review covers the recent findings on the fungal communities of the human gastrointestinal microbiota, termed the “mycobiome”, and their involvement in health and disease, with particular focus on the pathophysiology of inflammatory bowel disease.


Diversity ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 432
Author(s):  
Shi Yao ◽  
Xiaona Li ◽  
Hu Cheng ◽  
Kaining Sun ◽  
Xin Jiang ◽  
...  

The rhizosphere fungal community is essential for determining plant health and improving crop productivity. The fungal community structure and functional roles in the plastic shed soils were explored using high throughput sequencing and FUNGuild in this study. The fungal community structures shifted between the rhizosphere and non-rhizosphere soils. The greatest abundance variation was observed for the rare fungal members with relative abundances <0.1%. In the rhizosphere soil of pepper, the abundance of the genera Purpureocillium, Metacorgyceps, Arthrobotrys, Cephalotheca, and Scedosporium increased significantly, among which, Purpureocillium, Arthrobotrys and Metacorgyceps exhibited biocontrol characteristics. Co-occurrence network analysis revealed different interactions of fungal communities in the rhizosphere and non-rhizosphere soils, both of which were dominated by low abundance members. More positive correlation was identified among the rare members, the fungal pathotroph functions and phthalate acid ester in the rhizosphere soil. This study highlights the important niche of the rare fungal members in soil microbial ecology under plastic shed cultivation.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Suzanne Donn ◽  
Sally Power ◽  
Kirk Barnett ◽  
Jeff Powell

Future climate scenarios predict changes in rainfall regimes. These changes are expected to affect plants via effects on the expression of root traits associated with water and nutrient uptake. Associated microorganisms may also respond to these new precipitation regimes, either directly in response to changes in the soil environment or indirectly in response to altered root trait expression. We characterised arbuscular mycorrhizal (AM) fungal communities in an Australian grassland exposed to experimentally altered rainfall regimes. We used Illumina sequencing to assess the responses of AM fungal communities associated with four plant species sampled in different watering treatments and evaluated the extent to which shifts were associated with changes in root traits. We observed that altered rainfall regimes affected the composition but not the richness of the AM fungal communities, and we found distinctive communities in the increased rainfall treatment. We found no evidence of altered rainfall regime effects via changes in host physiology because none of the studied traits were affected by changes in rainfall. However, specific root length was observed to correlate with AM fungal richness, while concentrations of phosphorus and calcium in root tissue and the proportion of root length allocated to fine roots were correlated to community composition. Our study provides evidence that climate change and its effects on rainfall may influence AM fungal community assembly, as do plant traits related to plant nutrition and water uptake. We did not find evidence that host responses to altered rainfall drive AM fungal community assembly in this grassland ecosystem.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


Sign in / Sign up

Export Citation Format

Share Document