Integrated application of inorganic fertilizer with fulvic acid for improving soil nutrient supply and nutrient use efficiency of winter wheat in a salt-affected soil

2022 ◽  
Vol 170 ◽  
pp. 104255
Author(s):  
Xiaoyuan Liu ◽  
Jingsong Yang ◽  
Jianyu Tao ◽  
Rongjiang Yao
2011 ◽  
Vol 103 (5) ◽  
pp. 1452-1463 ◽  
Author(s):  
Xiaoyan Liu ◽  
Ping He ◽  
Jiyun Jin ◽  
Wei Zhou ◽  
Gavin Sulewski ◽  
...  

2010 ◽  
Vol 10 ◽  
pp. 1282-1292 ◽  
Author(s):  
Auldry Chaddy Petrus ◽  
Osumanu Haruna Ahmed ◽  
Ab Majid Nik Muhamad ◽  
Hassan Mohammad Nasir ◽  
Make Jiwan

Agricultural waste, such as sago waste (SW), is one of the sources of pollution to streams and rivers in Sarawak, particularly those situated near sago processing plants. In addition, unbalanced and excessive use of chemical fertilizers can cause soil and water pollution. Humic substances can be used as organic fertilizers, which reduce pollution. The objectives of this study were to produce K- and ammonium-based organic fertilizer from composted SW and to determine the efficiency of the organic-based fertilizer produced. Humic substances were isolated using standard procedures. Liquid fertilizers were formulated except for T2 (NPK fertilizer), which was in solid form. There were six treatments with three replications. Organic fertilizers were applied to soil in pots on the 10th day after sowing (DAS), but on the 28th DAS, only plants of T2 were fertilized. The plant samples were harvested on the 57th DAS during the tassel stage. The dry matter of plant parts (leaves, stems, and roots) were determined and analyzed for N, P, and K using standard procedures. Soil of every treatment was also analyzed for exchangeable K, Ca, Mg, and Na, organic matter, organic carbon, available P, pH, total N, P, nitrate and ammonium contents using standard procedures. Treatments with humin (T5 and T6) showed remarkable results on dry matter production; N, P, and K contents; their uptake; as well as their use efficiency by maize. The inclusion of humin might have loosened the soil and increased the soil porosity, hence the better growth of the plants. Humin plus inorganic fertilizer provided additional nutrients for the plants. The addition of inorganic fertilizer into compost is a combination of quick and slow release sources, which supplies N throughout the crop growth period. Common fertilization by surface application of T2 without any additives (acidic and high CEC materials) causes N and K to be easily lost. High Ca in the soil may have reacted with phosphate from fertilizer to form Ca phosphate, an insoluble compound of phosphate that is generally not available to plants, especially roots. Mixing soil with humin produced from composted SW before application of fertilizers (T5 and T6) significantly increased maize dry matter production and nutrient use efficiency. Additionally, this practice does not only improve N, P, and K use efficiency, but it also helps to reduce the use of N-, P-, and K-based fertilizers by 50%.


2021 ◽  
Vol 17 (2) ◽  
pp. 390-403
Author(s):  
Dinesh Pandey ◽  
Anjum Ahmad ◽  
J.K. Chauhan ◽  
N. Pandey

An experiment was carried out during the Kharif 2002 and 2003, to study the productivity and nutrient use efficiency of hybrid rice (Oryza sativa L.) in response to integrated use of organic and inorganic sources of nutrients at Research farm, IGAU, Raipur (CG). In all 12 treatments, comprising of different N, P and K levels and its conjunction with organic fertilizers were laid out in Randomized Block Design with 3 replications. The results revealed that application of inorganic fertilizer level of 150:80:60 kg NPK ha-1 significantly increased number of active leaf, leaf area, leaf area index and dry matter accumulation at later stages as compared to lower level of inorganic fertilizer. The conjunction of 100:60:40 kg NPK ha-1 along with PM or N blended with CDU found to be equally effective to that of inorganic fertilizer level of 150:80:60 kg NPK ha-1 for above growth parameters. The chlorophyll content during crop period under above level was the highest under said treatment. The highest crop growth rate was observed between 60-90 DAT followed by 90 DAT-harvest and 30-60 DAT, respectively. The per day accumulation of dry matter during 60-90 DAT period was almost three to four times of that accumulated during 30-60 DAT. Thereafter growth rate almost declined till maturity during both the years.The increased concentration of N at different growth stages and its uptake by plant helped in increasing the yield components and grain yield. The critical analysis of grain yield observations revealed that conjunction of lower levels of inorganic fertilizer (100:60:40 or 50:30:20 kg NPK ha-1) along with CDU or PM gave the saving of 50 kg N, 20 kg P and 20 kg K ha-1 for the cultivation of hybrid rice. Moreover, the higher buildup of available N and K has been also observed under said combination of organic and inorganic fertilizer treatments. The application of 150:80:60 kg NPK ha-1 along with PSB gave the highest buildup of available phosphorus. Inorganic level of 150:80:60 kg NPK ha-1 gave the highest production efficiency and productivity rating index, which was followed by application of inorganic fertilizer of 100:60:40 kg NPK ha-1 along with PM and blending of N with CDU, respectively. The application inorganic fertilizer of 50:30:20 kg NPK ha-1 + PM gave the highest nutrient efficiency during both the years. The highest input cost, net profit and per rupee investment was found under 150:80:60 kg NPK ha-1 followed by application of 100:60:40 kg NPK ha-1 along with PM.


2021 ◽  
Vol 13 (8) ◽  
pp. 4551
Author(s):  
Mehakpreet Kaur Randhawa ◽  
Salwinder Singh Dhaliwal ◽  
Vivek Sharma ◽  
Amardeep Singh Toor ◽  
Sandeep Sharma ◽  
...  

Nutrient use efficiency is reported as a strong indicator of the buildup soil nutrient status for nutritional security of crops through an integrated nutrient management approach under a rice-wheat system. The data revealed that integrated application of manures and fertilizers reported maximum organic carbon (0.39%) in the treatment receiving 100% of the recommended dose of fertilizers (RDF) + farmyard manure and lowering the pH to 6.39. The maximum available N (360.8 kg ha−1) was found in 100% RDF + press mud treatment; available P (66.30 kg ha−1) was found in 75% RDF + poultry manure; and available K, Zn, Cu, and Fe (226.3 kg ha−1 and 2.220, 0.732, and 36.87 mg kg−1, respectively) in 100% RDF + farmyard manure treatments. Similarly, total macro- and micronutrient content in soil increased with the addition of organic manures alone or in combination with chemical fertilizers. The highest agronomic efficiency and utilization efficiency of nitrogen (41.83 and 102.55 kg kg−1, respectively) and phosphorous (83.57 and 204.9 kg kg−1, respectively) were recorded in the treatment receiving 75% RDF + poultry manure. This study concluded that the integrated application of manures and chemical fertilizers is a must for improving soil nutrient status and nutrient use efficiency and ultimately enhances nutritional security under a rice-wheat system.


Sign in / Sign up

Export Citation Format

Share Document