Soil enzyme activities of typical plant communities after vegetation restoration on the Loess Plateau, China

2022 ◽  
Vol 170 ◽  
pp. 104292
Author(s):  
Yuxuan Chen ◽  
Tianxing Wei ◽  
Guoliang Sha ◽  
Qingke Zhu ◽  
Zhao Liu ◽  
...  
2018 ◽  
Vol 18 (5) ◽  
pp. 1971-1980 ◽  
Author(s):  
Li Xiao ◽  
Yimei Huang ◽  
Quanchao Zeng ◽  
Junfeng Zhao ◽  
Junying Zhou

2019 ◽  
Vol 9 (15) ◽  
pp. 3129 ◽  
Author(s):  
Deng ◽  
Chong ◽  
Zhang ◽  
Ren ◽  
Zhao ◽  
...  

Variability in soil enzyme activity may have important implications for the knowledge of underground ecosystem functions driven by soil extracellular enzymes. To illustrate the temporal variation in soil enzyme activity after afforestation, we collected soil samples during different vegetative growth periods in three Caragana korshinskii Kom. stands of different ages (20, 30, and 40 years) and in a slope cropland in the Loess Plateau. These samples were used to analyze the catalase, sucrase, urease and alkaline phosphatase activities, the soil water content and the available soil nutrients (i.e., dissolved organic carbon, dissolved organic nitrogen, and available phosphorus). The results illustrated that the soil enzyme activities significantly increased following afforestation and varied with temporal variation. Overall, soil enzyme activities were higher in June and August, particularly, and both alkaline phosphatase and sucrase were more sensitive to temporal variation than the other two enzymes. In addition, redundancy analysis showed that soil enzyme activities were greatly correlated with soil nutrients, especially for dissolved organic carbon and dissolved organic nitrogen. Therefore, the results highlighted the importance of soil enzyme activities to soil nutrients under temporal variation following afforestation in the Loess Plateau, which may have practical significance for forest managers’ fertilization management of plantation in different seasons and different stand ages.


Geoderma ◽  
2016 ◽  
Vol 282 ◽  
pp. 103-111 ◽  
Author(s):  
Chengjie Ren ◽  
Di Kang ◽  
Jian ping Wu ◽  
Fazhu Zhao ◽  
Gaihe Yang ◽  
...  

2013 ◽  
Vol 6 (2) ◽  
pp. 164-173 ◽  
Author(s):  
ZhengJun Guan ◽  
Qian Luo ◽  
Xi Chen ◽  
XianWei Feng ◽  
ZhiXi Tang ◽  
...  

Author(s):  
Yunlong Hu ◽  
Zhifeng Yu ◽  
Xiangling Fang ◽  
Weixiong Zhang ◽  
Jinrong Liu ◽  
...  

Mining causes serious destruction of the surface morphology and soil structure of lands, and vegetation restoration on post-mining lands provides an effective way for soil and water conservation. To determine the influence of mining and vegetation restoration on soil properties in the eastern margin of the Qinghai-Tibet Plateau, four land sites, including two vegetation restoration sites (restorated by Elymus nutans and Picea crassifolia, respectively), one non-vegetated mining site and one native grassland site, were selected. Fifty-two topsoil (0–10) samples were collected from these four sites, and then soil properties, trace metals and soil enzyme activities were analyzed. The results showed that there was an increase in soil pH (>8.0) after mining, while vegetation restoration decreased the soil pH compared with native grassland; the soil organic matter and total nitrogen in the site restored with E. nutans increased by 48.8% and 25.17%, respectively, compared with the site restored with P. crassifolia. The soil enzyme activities decreased after mining, and there were no significant increases in urease, phosphatase, β-glucosidase and β-1,4-N-acetylglucosaminidase activities after five years of restoration. In addition, the contents of soil trace metals (cadmium, chromium, mercury, lead and zinc) after mining were lower than the Chinese threshold (GB 15618/2018), but the content of arsenic in non-vegetated soil and P. crassifolia-restored soil exceeded the threshold by 22.61 times and 22.86 times, respectively. Therefore, As-contaminated land areas should be accurately determined and treated in a timely way to prevent arsenic from spreading, and plant species with tolerance to alkaline soil should be selected for vegetation restoration on post-mining lands.


Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Shao-shan An ◽  
Axel Mentler ◽  
Veronica Acosta-Martínez ◽  
Winfried Blum

AbstractOver-grazing and large-scale monocultures on the Loess plateau in China have caused serious soil erosion by water and wind. Grassland revegetation has been reported as one of the most effective counter measures. Therefore, we investigated soil aggregation, aggregate stability and soil microbial activities as key parameters for soil remediation through grassland revegetation.The results showed that soil microbial biomass carbon (Cmic) and microbial biomass nitrogen (Nmic) increased under revegetated grass communities compared to cropland and overgrazed pastures and were higher in surface layers (0–10 cm) than in the subsurface (10–20 cm). Although there are variations between the four investigated grassland communities, their values were 10 to 50 times higher in comparison to the cropland and overgrazed pastures, similar to the increase in soil enzyme activities, such as β-glucosidase and β-glucosaminidase.Soil aggregate stability (SAS) showed clear differences between the different land uses with two main soil aggregate fractions measured by ultra sound: < 63 μm and 100–250 μm, with approximately 70% and 10% of the total soil volume respectively. We also found positive correlations between SAS and soil microbial parameters, such as Cmic, Nmic, and soil enzyme activities. From this, we concluded that revegetation of eroded soils by grasses accelerates soil rehabilitation.


2019 ◽  
Vol 11 (19) ◽  
pp. 5171
Author(s):  
Li ◽  
Zhang ◽  
Hao ◽  
Cui ◽  
Zhu ◽  
...  

The authors would like to make the following corrections about the published paper [1]. The changes are as follows: [...]


Sign in / Sign up

Export Citation Format

Share Document