scholarly journals Investigating the effect of microbial inoculants Frankia F1 on growth-promotion, rhizosphere soil physicochemical properties, and bacterial community of ginseng

2022 ◽  
Vol 172 ◽  
pp. 104369
Author(s):  
Yuqi Qi ◽  
Haolang Liu ◽  
Beiping Zhang ◽  
Mingxin Geng ◽  
Xixi Cai ◽  
...  
Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 954
Author(s):  
Saiyaremu Halifu ◽  
Xun Deng ◽  
Xiaoshuang Song ◽  
Yuning An ◽  
Ruiqing Song

Pinus sylvestris var. mongolica is an important tree species for ecological construction and environmental restoration owing to its rapid growth rate and excellent stress resistance. Pinus sylvestris var. mongolica sphaeropsis blight is a widespread disease caused by Sphaeropsis sapinea. This study was focused on non-infected (CK) and infected (SS) Pinus sylvestris var. mongolica plants in Zhanggutai area, Liaoning Province, China. Illumina high-throughput sequencing based on the templates of sequencing-by-synthesis working with reversible terminators is a widely used approach. In the present study, systematic differences in relationships among rhizosphere soil physicochemical properties, bacterial community structure, diverse bacterial genera, and alpha diversity indices between the two categories were evaluated. The current findings are as follows: (1) Shannon’s index of SS soil was significantly higher than CK, and it was significantly lower in May than July and September (p < 0.05). (2) Non-metric multidimensional scaling (NMDS) showed a difference in bacterial community structure during May (spring), July (summer), and September. (3) At the phylum level, no significant difference was found in the bacterial genera between CK and SS soil for three seasons; however, at the genus level, there were about 19 different bacterial genera. The correlation studies between 19 different bacterial genera and environmental factors and α-diversity indicated that bacterial genera of non-infected and infected Pinus sylvestris var. mongolica were distributed differently. The bacterial genera with CK were positively correlated with soil physicochemical properties, while a negative correlation was found for SS. In conclusion, the differences in nutrient and microbial community structure in the rhizosphere soil of Pinus sylvestris var. mongolica are the main causes of shoot blight disease.


2020 ◽  
Author(s):  
Han Li ◽  
Luyun Luo ◽  
Bin Tang ◽  
Huanle Guo ◽  
Zhongyang Cao ◽  
...  

Abstract Although rhizosphere microorganisms have been studied for a long time, rhizosphere microbial communities based on monoculture and intercropping soybean and maize have rarely been studied. To define the effect of crop monoculture and intercropping on soil physicochemical properties and rhizosphere bacterial communities, field experiments were conducted using maize and soybean cultivars at five different crop growth stages, including monoculture maize, monoculture soybean and maize-soybean intercropping. The rhizosphere bacterial communities were analyzed by using the 16S rRNA Illumina sequencing. The pH and soil organic matter (SOM) were the key factors affecting crop rhizosphere soil bacterial communities. The intercropping soybean-maize increased the available phosphorus (AP) content at five different crop growth stages. And the available potassium (AK) content in the intercropping soybean soil samples was higher than corresponding monoculture soil samples. The content of available cadmium (ACd) in monoculture soybean rhizosphere soil samples decreased and then increased, but the intercropping soybean soil samples indicated an opposite trend. Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria and Firmicutes were the dominant phyla in the soybean and maize rhizosphere soil samples. Crops of the same plant species showed little difference in the bacterial community diversity under the two planting modes. The results indicated the intercropping planting pattern altered the absorption of ACd in the maize and soybean soil since the S2 stage and showed a different change in different crop growth stages. And the maize-soybean intercropping system also changed the bacterial community and soil physicochemical properties.


2020 ◽  
Vol 112 (5) ◽  
pp. 4358-4372
Author(s):  
Meiqi Chen ◽  
Jisheng Xu ◽  
Zengqiang Li ◽  
Bingzi Zhao ◽  
Jiabao Zhang

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yun Hu ◽  
Yanyan Li ◽  
Xiaoqiong Yang ◽  
Chunli Li ◽  
Lin Wang ◽  
...  

AbstractBacterial wilt as a soil-borne disease was caused by Ralstonia solanacearum, and seriously damages the growth of tobacco. Integrated biocontrol method was explored to control bacterial wilt. Nevertheless, the long-term effects of the integrated biocontrol method on soil bacterial community, soil physicochemical properties and the incidence of bacterial wilt are not well understood. In this study, B. amyoliquefaciens ZM9, calcium cyanamide and rice bran were applied to tobacco fields in different ways. The disease index and incidence of tobacco bacterial wilt (TBW), soil physicochemical properties, colonization ability of B. amyoliquefaciens ZM9, and rhizopshere bacterial community were investigated. The results showed that the integrated application of B. amyoliquefaciens ZM9, rice bran and calcium cyanamide had the highest control efficiency of TBW and bacteria community diversity. Additionally, the integrated biocontrol method could improve the colonization ability of B. amyoliquefaciens ZM9. Furthermore, the integrated biocontrol method could effectively suppress TBW by regulating soil physicochemical properties, promoting beneficial bacteria and antagonistic bacteria of rhizopshere soil. This strategy has prospect of overcoming the defects in application of a single antagonistic bacteria and provides new insights to understand how to improve the colonization capacity of antagonistic bacteria and control efficacy for TBW.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yun Hu ◽  
Wan Zhao ◽  
Xihong Li ◽  
Ji Feng ◽  
Chunli Li ◽  
...  

AbstractTobacco bacterial wilt (TBW) is seriously damages the growth of tobacco. There is an urgent need to find a safer and more effective measure to control TBW. In this study, B. amyloliquefaciens ZM9 and marigold powder were applied to the tobacco roots alone or in combination, and the potential inhibition of TBW was assessed. On the other hand, the effects of these treatments on soil physicochemical properties, rhizosphere microbial community and soil metabolites were also evaluated. The results showed that the application of B. amyloliquefaciens ZM9 or marigold powder alone significantly reduced the abundance of R. solanacearum in rhizosphere soil, while the integrated treatment showed the strongest inhibitory effect. Moreover, the integrated treatment can inhibit the secretion of chemoattractants, and affect the change of rhizosphere soil microbial composition. In conclusion, the combination of antagonistic bacteria agent B. amyloliquefaciens ZM9 with marigold powder can enhance the suppression of TBW. Furthermore, B. amyloliquefaciens ZM9 and marigold have synergistic effects on suppressing TBW by regulation soil physicochemical properties, soil metabolites and microbial structure. This study provide a promising strategy for TBW control by integrated applying of B. amyloliquefaciens ZM9 and marigold powder.


2022 ◽  
Vol 10 (1) ◽  
pp. 158
Author(s):  
Jinan Cheng ◽  
Hui Jin ◽  
Jinlin Zhang ◽  
Zhongxiang Xu ◽  
Xiaoyan Yang ◽  
...  

Allelochemicals released from the root of Stellera chamaejasme L. into rhizosphere soil are an important factor for its invasion of natural grasslands. The aim of this study is to explore the interactions among allelochemicals, soil physicochemical properties, soil enzyme activities, and the rhizosphere soil microbial communities of S. chamaejasme along a growth-coverage gradient. High-throughput sequencing was used to determine the microbial composition of the rhizosphere soil sample, and high-performance liquid chromatography was used to detect allelopathic substances. The main fungal phyla in the rhizosphere soil with a growth coverage of 0% was Basidiomycetes, and the other sample plots were Ascomycetes. Proteobacteria and Acidobacteria were the dominant bacterial phyla in all sites. RDA analysis showed that neochamaejasmin B, chamaechromone, and dihydrodaphnetin B were positively correlated with Ascomycota and Glomeromycota and negatively correlated with Basidiomycota. Neochamaejasmin B and chamaechromone were positively correlated with Proteobacteria and Actinobacteria and negatively correlated with Acidobacteria and Planctomycetes. Allelochemicals, soil physicochemical properties, and enzyme activity affected the composition and diversity of the rhizosphere soil microbial community to some extent. When the growth coverage of S. chamaejasme reached the primary stage, it had the greatest impact on soil physicochemical properties and enzyme activities.


2019 ◽  
Author(s):  
Zhang Tao ◽  
Dang Han Li ◽  
Wang Zhong Ke ◽  
Lv Xin Hua ◽  
Zhuang Li

Abstract Background Ferula sinkiangensis is a desert short-lived medicinal plant, and its number is rapidly decreasing. Rhizosphere microbial community plays an important role in regulating global biogeochemical cycle, plant growth and adaptability. However, the Ferula sinkiangensis bacterial community and the processes that drive its assembly remain unclear. Results In this study, based on Illumina HiSeq high-throughput sequencing, we explored the diversity, structure and composition of Ferula sinkiangensis rhizosphere bacterial communities at different slope positions (upper, middle and bottom) and soil depths (0-10 cm, 10-25 cm, 25-40 cm) and their correlation with soil physicochemical properties. Actinobacteria (22.7%), Proteobacteria (18.6%), Acidobacteria (14.0%), Gemmatimonadetes (10.1%), Cyanobacteria (7.9%), Bacteroidetes (6.9%), Planctomycetes (3.9%), Verrucomicrobia (3.5%), Firmicutes (3.4%) and Chloroflexi (3.2%) were the dominant bacterial phyla in Ferula sinkiangensis rhizosphere soil. Variance analysis showed that the diversity and abundance of rhizosphere bacterial community in Ferula sinkiangensis were significantly different at various slope positions and soil depths. Specifically, the diversity of bacterial community was significantly higher at the top than the bottom of the slope, and the diversity and richness of bacterial community were significantly greater in the 0-10cm than the 25-40cm soil layer. Linear discriminant effect size (LEfSe) analysis showed the specific phyla and genera of bacteria affected by slope position and soil depth. For example, Planctomycetes, Sphingomonas , Rubrobacter and Adhaeribacter by slope position and significant impact on soil depth. In addition, distance-based redundancy analysis (db-RDA) and variance analysis showed that soil physicochemical factors jointly explained 29.81% of variation in Ferula sinkiangensis rhizosphere bacterial community structure. There was a significant positive correlation between available phosphorus(AP)and the diversity of Ferula sinkiangensis rhizosphere bacterial community ( p < 0.01), whereas pH largely explained the variation of Ferula sinkiangensis rhizosphere bacterial community structure (5.58%, p < 0.01), followed by altitude (5.53%), total salt (TS, 5.21%) and total phosphorus (TP, 4.90%). Conclusion Our results revealed the heterogeneity and variation trends of Ferula sinkiangensis rhizosphere bacterial community diversity and abundance on a fine spatial scale (slope position and depth) and shed new light on the interaction mechanisms between Ferula sinkiangensis rhizosphere bacterial community and soil physicochemical properties.


Sign in / Sign up

Export Citation Format

Share Document