Study of microstructure and phase evolution of hot-dipped aluminide mild steel during high-temperature diffusion using electron backscatter diffraction

2011 ◽  
Vol 257 (10) ◽  
pp. 4663-4668 ◽  
Author(s):  
Wei-Jen Cheng ◽  
Chaur-Jeng Wang
2011 ◽  
Vol 11 (10) ◽  
pp. 4660-4666 ◽  
Author(s):  
Wolfgang Wisniewski ◽  
Carlos André Baptista ◽  
Matthias Müller ◽  
Günter Völksch ◽  
Christian Rüssel

2003 ◽  
Vol 94 (5) ◽  
pp. 580-586 ◽  
Author(s):  
Bernhard Obst ◽  
Rainer Nast ◽  
Sonja Schlachter ◽  
Bernd de Boer ◽  
Bernhard Holzapfel ◽  
...  

2018 ◽  
Vol 233 (6) ◽  
pp. 379-390 ◽  
Author(s):  
Sergey N. Volkov ◽  
Valentina A. Yukhno ◽  
Rimma S. Bubnova ◽  
Vladimir V. Shilovskikh

Abstract The low-temperature polymorph β-Ca11B2Si4O22 crystallizes as a monoclinic structure [space group is P21/c, a=14.059(9), b=6.834(5), c=10.597(7) Å, β=100.735(8)°]. The crystal investigated by single-crystal X-ray diffraction was a twin composed of six individuals. The crystal structure is similar to that of mineral spurrite, Ca5(SiO4)2CO3, and can be described as a framework of [CaO5] and [CaO6] polyhedra, the cavities of which are filled with [SiO4] and [BO3] groups. The orientation relationship of twin domains was investigated by electron backscatter diffraction (EBSD). Thermal expansion was studied by high-temperature X-ray powder diffraction. It is slightly anisotropic: α11=10, α22=16, α33=12×10−6°C−1 at 200°C.


Author(s):  
Xiao Wang ◽  
Yuetao Zhang ◽  
Zhengqing Zhou ◽  
Mingyu Huang

This paper reports the degradation assessment of mild steel during the plastic tensile process. The electron backscatter diffraction (EBSD) technique was adopted in this study. The orientation maps showed that with the increase of tensile strain, the grain surface become wrinkled, and the deviation level of intragranular orientation also increased. Meanwhile, the parameters based on the image quality of the Kikuchi bands (i.e. BC and MAD) as well as the crystallographic orientation (i.e. LAGBs content, GND density, GOS, and GROD) can be used to evaluate the degradation degree of the mild steel. The results showed that the change of BC and MAD was significant at the end of plastic stage, but was not sufficiently distinctive at the early stage; Meanwhile, the LAGBs content and GND density increased evidently during the plastic tensile. Compared with the former, the GND density exhibited stronger regularity and better evaluation effect; Besides, a general upward trend of GOS and GROD was observed at this tensile process. However, the GROD changed less at the certain plastic stage. Compared with GROD, the GOS exhibited a relatively better evaluation effect; To sum up, the GND density and GOS are the better indicators for evaluating the degradation degree of mild steel.


2007 ◽  
Vol 561-565 ◽  
pp. 2087-2090 ◽  
Author(s):  
Ya Ming Huang ◽  
Qiang Fu ◽  
Chun Xu Pan

Electron backscatter diffraction (EBSD) has been developed as a novel technique for characterizing crystallographic textures in recent years. The present paper proposes an “in-situ-tracking” approach using SEM and EBSD to examining the microstructural development and grain boundary variation of stainless steel during elevated 1200 °C service. The results revealed that in addition to the coarsened grains the fraction of low angle grain boundaries (LABG) became increased and flattened obviously during service. Comparing to the regular high temperature service (below 900 °C), the present “recovery and recrystallization” process was accelerated due to dislocation fastened movement and intensive interaction. However, the grain growth mechanism still meet the well-accepted dislocation model of subgrain combination.


Sign in / Sign up

Export Citation Format

Share Document