scholarly journals Effect of a low water concentration in chloride, sodium and potassium on oocyte maturation, oocyte hydration, ovulation and egg quality in rainbow trout

Aquaculture ◽  
2022 ◽  
Vol 546 ◽  
pp. 737374
Author(s):  
Emilien Segret ◽  
Emilie Cardona ◽  
Sandrine Skiba-Cassy ◽  
Frédéric Cachelou ◽  
Julien Bobe
2021 ◽  
Author(s):  
Emilien Segret ◽  
Emilie Cardona ◽  
Sandrine Skiba-Cassy ◽  
Frederic Cachelou ◽  
Julien Bobe

Water salinity is an important environmental factor known to have detrimental effects on salmonid reproduction, mostly when migrating female broodfish are held in sea water. In contrast, data obtained in freshwater are scarce and the impact of low water salinity during reproduction in freshwater is currently unknown. For this reason, and because ion and water fluxes are critical for the final steps of the female gamete formation, including oocyte hydration and ovulation, the aim of the present study was to investigate the impact of low salinity water on final oocyte maturation, ovulation and, ultimately, on egg quality, using rainbow trout as a physiological model and relevant aquaculture species. Fish from the same commercial strain were raised throughout their lifecycle either in a site characterized by low concentrations of Na+, K+, and Cl- ions in the water or in a closely located control site exhibiting standard salinity levels. Egg quality and duration of final oocyte maturation were investigated using innovative phenotyping tools such as automatic assessment of egg viability using the VisEgg system and non-invasive echograph-based monitoring of final oocyte maturation duration, respectively. Oocyte hydration during final oocyte maturation and after ovulation was also investigated. Finally, molecular phenotyping was performed using real-time PCR-based monitoring of several key players of final oocyte maturation and ovulation associated with ion and water transport, inflammation, proteolytic activity, and coagulation. Oocyte hydration and gene expression data were analyzed in the light of the duration of final oocyte maturation. Here we show that low water salinity negatively influences final oocyte maturation, ovulation and, ultimately, egg quality. Low water salinity triggers delayed ovulation and lower oocyte viability. When investigating the impact of low water salinity on final oocyte maturation duration, individuals presenting the most severe phenotypes exhibited impaired oocyte hydration and abnormally reduced gene expression levels of several key players of the ovulatory process. While the under expression of water (e.g., aquaporins) and ion (e.g., solute carriers) transporters is consistent with impaired oocyte hydration, our observations also indicate that the entire ovulatory gene expression program is disrupted. Our results raise the question of the mechanisms underlying the negative influence of low salinity water on the dynamics of the preovulatory phase, on the control of the oocyte homeostasis, including hydration, and on the overall success of the maturation-ovulation process.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gregory M. Weber ◽  
Jill Birkett ◽  
Kyle Martin ◽  
Doug Dixon ◽  
Guangtu Gao ◽  
...  

Abstract Background Transcription is arrested in the late stage oocyte and therefore the maternal transcriptome stored in the oocyte provides nearly all the mRNA required for oocyte maturation, fertilization, and early cleavage of the embryo. The transcriptome of the unfertilized egg, therefore, has potential to provide markers for predictors of egg quality and diagnosing problems with embryo production encountered by fish hatcheries. Although levels of specific transcripts have been shown to associate with measures of egg quality, these differentially expressed genes (DEGs) have not been consistent among studies. The present study compares differences in select transcripts among unfertilized rainbow trout eggs of different quality based on eyeing rate, among 2 year classes of the same line (A1, A2) and a population from a different hatchery (B). The study compared 65 transcripts previously reported to be differentially expressed with egg quality in rainbow trout. Results There were 32 transcripts identified as DEGs among the three groups by regression analysis. Group A1 had the most DEGs, 26; A2 had 15, 14 of which were shared with A1; and B had 12, 7 of which overlapped with A1 or A2. Six transcripts were found in all three groups, dcaf11, impa2, mrpl39_like, senp7, tfip11 and uchl1. Conclusions Our results confirmed maternal transcripts found to be differentially expressed between low- and high-quality eggs in one population of rainbow trout can often be found to overlap with DEGs in other populations. The transcripts differentially expressed with egg quality remain consistent among year classes of the same line. Greater similarity in dysregulated transcripts within year classes of the same line than among lines suggests patterns of transcriptome dysregulation may provide insight into causes of decreased viability within a hatchery population. Although many DEGs were identified, for each of the genes there is considerable variability in transcript abundance among eggs of similar quality and low correlations between transcript abundance and eyeing rate, making it highly improbable to predict the quality of a single batch of eggs based on transcript abundance of just a few genes.


1963 ◽  
Vol 25 (4) ◽  
pp. 457-464 ◽  
Author(s):  
W. N. HOLMES ◽  
D. G. BUTLER

SUMMARY The effects were studied of cortisol, corticosterone and aldosterone on the concentrations of sodium and potassium in muscle and blood plasma and on water content of muscle in the fresh-water rainbow trout (Salmo gairdneri). These steroids appeared to cause a loss in plasma sodium throughout the 96 hr. experimental period. An initial rise in muscle sodium was observed during the first 24 hr. after commencement of the treatments. The subsequent decline in muscle sodium was interrupted by a transient rise followed by a continuing decline. The effect of these hormones on the potassium concentrations in plasma was variable, although there was a significant rise in the potassium concentration in muscle during the period of decline in sodium concentration. The significance of these results in relation to the possible enhanced adrenocortical activity of the trout during adaptation to a marine environment is discussed.


2010 ◽  
Vol 118 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Hélène Rime ◽  
Thaovi Nguyen ◽  
Julien Bobe ◽  
Alexis Fostier ◽  
Gilles Monod

Sign in / Sign up

Export Citation Format

Share Document