scholarly journals Calculation method for the dielectric constant of thioglycolic acid grafted modified SBS dielectric elastomer

2021 ◽  
pp. 103361
Author(s):  
Youyuan Wang ◽  
Zhanxi Zhang ◽  
Rongliang Zheng ◽  
Yanfang Zhang
2010 ◽  
Vol 20 (19) ◽  
pp. 3280-3291 ◽  
Author(s):  
Martin Molberg ◽  
Daniel Crespy ◽  
Patrick Rupper ◽  
Frank Nüesch ◽  
Jan-Anders E. Månson ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (59) ◽  
pp. 37148-37157 ◽  
Author(s):  
Mengnan Ruan ◽  
Dan Yang ◽  
Wenli Guo ◽  
Shuo Huang ◽  
Yibo Wu ◽  
...  

Barium titanate (BT) particles, BT-KH570 particles, and polar plasticizer tri-n-butyl phosphate (TBP) were added into BIIR matrix to form a dielectric elastomer composite, which had a high dielectric constant, good mechanical properties, and large actuated strain.


2012 ◽  
Vol 79 ◽  
pp. 41-46 ◽  
Author(s):  
Fabia Galantini ◽  
Sabrina Bianchi ◽  
Valter Castelvetro ◽  
Irene Anguillesi ◽  
Giuseppe Gallone

Among the broad class of electro-active polymers, dielectric elastomer actuators represent a rapidly growing technology for electromechanical transduction. In order to further develop this applied science, the high driving voltages currently needed must be reduced. For this purpose, one of the most promising and adopted approach is to increase the dielectric constant while maintaining both low dielectric losses and high mechanical compliance. In this work, a dielectric elastomer was prepared by dispersing functionalised carbon nanotubes into a polyurethane matrix and the effects of filler dispersion into the matrix were studied in terms of dielectric, mechanical and electro-mechanical performance. An interesting increment of the dielectric constant was observed throughout the collected spectrum while the loss factor remained almost unchanged with respect to the simple matrix, indicating that conductive percolation paths did not arise in such a system. Consequences of the chemical functionalisation of carbon nanotubes with respect to the use of unmodified filler were also studied and discussed along with rising benefits and drawbacks for the whole composite material.


2020 ◽  
Vol 8 (44) ◽  
pp. 23330-23343
Author(s):  
Haibin Sun ◽  
Xueying Liu ◽  
Suting Liu ◽  
Bing Yu ◽  
Nanying Ning ◽  
...  

A silicone dielectric elastomer with simultaneous high dielectric constant, fast and efficient self-healing ability at mild conditions was prepared by constructing supramolecular network assembled by coordination bonds and hydrogen bonds.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5828
Author(s):  
Ewa Olewnik-Kruszkowska ◽  
Weronika Brzozowska ◽  
Arkadiusz Adamczyk ◽  
Magdalena Gierszewska ◽  
Izabela Wojtczak ◽  
...  

Currently, scientists are still looking for new polymeric materials characterized by improved mechanical, thermal as well as dielectric properties. Moreover, it should be stressed that new composites should be environmentally friendly. For this reason, the aim of this work is to establish the influence of natural fillers in the form of diatomaceous biosilica (B) and talc (T) on the properties of dielectric elastomer (DE)-based composites. The dielectric elastomer-based materials have been tested taking into account their morphology, thermal and mechanical properties. Moreover, the dielectric constant of the obtained materials was evaluated. Obtained results revealed that the presence of both diatomaceous biosilica and talc significantly increases dielectric properties while having no significant effect on the mechanical properties of the obtained composites. It should be stressed that the performed analyses constitute a valuable source of knowledge on the effective modification of the thermal and dielectric properties of newly obtained materials.


2012 ◽  
Vol 557-559 ◽  
pp. 1869-1874 ◽  
Author(s):  
Takeshi Fukuda ◽  
Zhi Wei Luo ◽  
Aya Ito

Dielectric elastomer actuators with high dielectric constant and flexibility were prepared. These actuators were fabricated by the composite of barium titanate (BaTiO3) and polyester-type thermosetting polyurethane (TSU), which was molecularly-designed to become less hard segment content. In this study, the effects of particle size, volume fraction and manufacturing method of BaTiO3 were investigated. In addition, the mechanically-stretched effect in composites was also evaluated. It turned out that the electrical breakdown strength increased with the increase of particle size of BaTiO3 and in volume fraction as well as the use of BaTiO3 synthesized by the oxalate method. In addition, prestrain of composites also raised the electrical breakdown strength. However, the addition of BaTiO3 to polyurethane didn’t contribute to the actuation under a lower electric field.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1687 ◽  
Author(s):  
Liang Jiang ◽  
Yanfen Zhou ◽  
Yuhao Wang ◽  
Zhiqing Jiang ◽  
Fang Zhou ◽  
...  

Dielectric elastomer (DE) composites with high electrical breakdown strength and large voltage-induced deformation were developed by retaining pre-stretched thermoplastic polyurethane (TPU) fibers in ethylene vinyl acetate copolymer (EVA). The microstructure of the candidate E-TPU fiber membrane and EVA coated E-TPU (E-TPU/EVA) film were characterized by scanning electron microscopy (SEM). The quasi-static and dynamic mechanical property, and the electromechanical properties, including the dielectric constant, dielectric loss tangent, and electromechanical sensitivity, of the DE composites were evaluated. Initially, tensile tests demonstrated that the DE composites based on E-TPU/EVAs had a higher elongation at break of above 1000% but a low elastic modulus of approximately 1.7 MPa. Furthermore, dielectric spectroscopy showed that the E-TPU/EVA had a dielectric constant of 4.5 at the frequency of 1000 Hz, which was 1.2 times higher than that of pure EVA film. Finally, it was found from electromechanical test that the voltage induced strain of E-TPU/EVA rose to 6%, nearly 3 times higher than that of pure TPU film, indicating an excellent electromechanical property. The DE composites developed have demonstrated the potential to be good candidate materials in the fields of artificial intelligence, biomimicry and renewable energy.


2012 ◽  
Vol 110 (2) ◽  
pp. 511-515 ◽  
Author(s):  
Junjie Sheng ◽  
Hualing Chen ◽  
Bo Li ◽  
Longfei Chang

Sign in / Sign up

Export Citation Format

Share Document