A simulating annealing algorithm to solve the green vehicle routing & scheduling problem with hierarchical objectives and weighted tardiness

2015 ◽  
Vol 34 ◽  
pp. 372-388 ◽  
Author(s):  
Yiyong Xiao ◽  
Abdullah Konak
Author(s):  
Chin-Chia Wu ◽  
Ameni Azzouz ◽  
Jia-Yang Chen ◽  
Jianyou Xu ◽  
Wei-Lun Shen ◽  
...  

AbstractThis paper studies a single-machine multitasking scheduling problem together with two-agent consideration. The objective is to look for an optimal schedule to minimize the total tardiness of one agent subject to the total completion time of another agent has an upper bound. For this problem, a branch-and-bound method equipped with several dominant properties and a lower bound is exploited to search optimal solutions for small size jobs. Three metaheuristics, cloud simulated annealing algorithm, genetic algorithm, and simulated annealing algorithm, each with three improvement ways, are proposed to find the near-optimal solutions for large size jobs. The computational studies, experiments, are provided to evaluate the capabilities for the proposed algorithms. Finally, statistical analysis methods are applied to compare the performances of these algorithms.


2021 ◽  
Vol 12 (3) ◽  
pp. 212-231
Author(s):  
Issam El Hammouti ◽  
Azza Lajjam ◽  
Mohamed El Merouani

The berth allocation problem is one of the main concerns of port operators at a container terminal. In this paper, the authors study the berth allocation problem at the strategic level commonly known as the strategic berth template problem (SBTP). This problem aims to find the best berth template for a set of calling ships accepted to be served at the port. At strategic level, port operator can reject some ships to be served for avoid congestion. Since the computational complexity of the mathematical formulation proposed for SBTP, solution approaches presented so far for the problem are limited especially at level of large-scale instances. In order to find high quality solutions with a short computational time, this work proposes a population based memetic algorithm which combine a first-come-first-served (FCFS) technique, two genetics operators, and a simulating annealing algorithm. Different computational experiences and comparisons against the best known solutions so far have been presented to show the performance and effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document