In Vivo Human Scfv Phage Display Assisted Identification Of Galectin-3 As A New Biomarker For Atherosclerosis

2019 ◽  
Vol 287 ◽  
pp. e166
Author(s):  
M.J. Jacobin-Valat ◽  
A. Hemadou ◽  
A. Fontayne ◽  
C. Lorenzato ◽  
J. Laroche-Traineau ◽  
...  
Keyword(s):  
2021 ◽  
Author(s):  
Yeon-Sook Choi ◽  
Myung Ji kim ◽  
Eun A Choi ◽  
Sinae Kim ◽  
Eun Ji Lee ◽  
...  

Abstract Background One of the major challenges in pancreatic ductal adenocarcinoma (PDAC) management is a local or distant metastasis and limited targeted therapeutics to prevent the process. We aimed to identify a druggable target by screening abnormally secreted protein from PDAC and explore its therapeutic intervention. Methods A LC-MS/MS-based proteomics was carried out for TIF (Tumor Interstitial Fluids) obtained from patient derived xenograft (PDX) models of PDAC. To develop a blocking antibody for selected target protein, antibody phage-display technology was used. Results The proteomic screening of PDAC secretome identified Galectin-3 binding protein (Gal-3BP hereafter) as a top candidate. The Gal-3BP is highly expressed and secreted in PDAC tumors and primary cells. Subsequent functional tests by stable knockdown revealed the Gal-3BP is required for PDAC cell proliferation, migration and invasion. In addition, the depletion of Gal-3BP significantly abrogated in vivo tumor formation and metastasis of pancreatic cancer cells. Mechanistically, we found Gal-3BP enhances the galectin-3 mediated EGFR signaling, leading to the activation of cMyc and its target genes related to EMT. To examine the clinical usability of these findings, we screened a Gal-3BP-immunized chicken antibody library using phage display technique. The two isolated blocking antibody clones against Gal-3BP profoundly inhibited the metastasis of PDAC cells in vivo. Conclusions Altogether, our data demonstrates the Gal-3BP is an important therapeutic target in PDAC and proposed its blockade by antibody as a novel, therapeutic option for the inhibition of PDAC metastasis.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Audrey Hemadou ◽  
Jeanny Laroche-Traineau ◽  
Ségolène Antoine ◽  
Philippe Mondon ◽  
Alexandre Fontayne ◽  
...  

2021 ◽  
Vol 10 (19) ◽  
Author(s):  
Audrey Hemadou ◽  
Alexandre Fontayne ◽  
Jeanny Laroche‐Traineau ◽  
Florence Ottones ◽  
Philippe Mondon ◽  
...  

Background Atherosclerosis is a complex pathology in which dysfunctional endothelium, activated leucocytes, macrophages, and lipid‐laden foam cells are implicated, and in which plaque disruption is driven by many putative actors. This study aimed to identify accurate targetable biomarkers using new in vivo approaches to propose tools for improved diagnosis and treatment. Methods and Results Human scFv (single‐chain fragment variable) selected by in vivo phage display in a rabbit model of atherosclerosis was reformatted as scFv fused to the scFv‐Fc (single‐chain fragment variable fused to the crystallizable fragment of immunoglobulin G format) antibodies. Their reactivity was tested using flow cytometry and immunoassays, and aorta sections from animal models and human carotid and coronary artery specimens. A pool of atherosclerotic proteins from human endarterectomies was co‐immunoprecipitated with the selected scFv‐Fc followed by mass spectrometry for target identification. Near‐infrared fluorescence imaging was performed in Apoe −/− mice after injection of an Alexa Fluor 647–labeled scFv‐Fc‐2c antibody produced in a baculovirus system with 2 additional cysteine residues (ie, 2c) for future coupling to nano‐objects for theranostic applications. One scFv‐Fc clone (P3) displayed the highest cross‐reactivity against atherosclerotic lesion sections (rabbit, mouse, and human) and was chosen for translational development. Mass spectrometry identified galectin‐3, a β‐galactoside‐binding lectin, as the leader target. ELISA and immunofluorescence assays with a commercial anti‐galectin‐3 antibody confirmed this specificity. P3 scFv‐Fc‐2c specifically targeted atherosclerotic plaques in the Apoe −/− mouse model. Conclusions These results provide evidence that the P3 antibody holds great promise for molecular imaging of atherosclerosis and other inflammatory pathologies involving macrophages. Recently, galectin‐3 was proposed as a high‐value biomarker for the assessment of coronary and carotid atherosclerosis.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Laetitia Seguin ◽  
Soline Odouard ◽  
Francesca Corlazzoli ◽  
Sarah Al Haddad ◽  
Laurine Moindrot ◽  
...  

AbstractRecently, we involved the carbohydrate-binding protein Galectin-3 (Gal-3) as a druggable target for KRAS-mutant-addicted lung and pancreatic cancers. Here, using glioblastoma patient-derived stem cells (GSCs), we identify and characterize a subset of Gal-3high glioblastoma (GBM) tumors mainly within the mesenchymal subtype that are addicted to Gal-3-mediated macropinocytosis. Using both genetic and pharmacologic inhibition of Gal-3, we showed a significant decrease of GSC macropinocytosis activity, cell survival and invasion, in vitro and in vivo. Mechanistically, we demonstrate that Gal-3 binds to RAB10, a member of the RAS superfamily of small GTPases, and β1 integrin, which are both required for macropinocytosis activity and cell survival. Finally, by defining a Gal-3/macropinocytosis molecular signature, we could predict sensitivity to this dependency pathway and provide proof-of-principle for innovative therapeutic strategies to exploit this Achilles’ heel for a significant and unique subset of GBM patients.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yongbing Pan ◽  
Jianhui Du ◽  
Jia Liu ◽  
Hai Wu ◽  
Fang Gui ◽  
...  

AbstractAs the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to threaten public health worldwide, the development of effective interventions is urgently needed. Neutralizing antibodies (nAbs) have great potential for the prevention and treatment of SARS-CoV-2 infection. In this study, ten nAbs were isolated from two phage-display immune libraries constructed from the pooled PBMCs of eight COVID-19 convalescent patients. Eight of them, consisting of heavy chains encoded by the immunoglobulin heavy-chain gene-variable region (IGHV)3-66 or IGHV3-53 genes, recognized the same epitope on the receptor-binding domain (RBD), while the remaining two bound to different epitopes. Among the ten antibodies, 2B11 exhibited the highest affinity and neutralization potency against the original wild-type (WT) SARS-CoV-2 virus (KD = 4.76 nM for the S1 protein, IC50 = 6 ng/mL for pseudoviruses, and IC50 = 1 ng/mL for authentic viruses), and potent neutralizing ability against B.1.1.7 pseudoviruses. Furthermore, 1E10, targeting a distinct epitope on RBD, exhibited different neutralization efficiency against WT SARS-CoV-2 and its variants B.1.1.7, B.1.351, and P.1. The crystal structure of the 2B11–RBD complexes revealed that the epitope of 2B11 highly overlaps with the ACE2-binding site. The in vivo experiment of 2B11 using AdV5-hACE2-transduced mice showed encouraging therapeutic and prophylactic efficacy against SARS-CoV-2. Taken together, our results suggest that the highly potent SARS-CoV-2-neutralizing antibody, 2B11, could be used against the WT SARS-CoV-2 and B.1.1.7 variant, or in combination with a different epitope-targeted neutralizing antibody, such as 1E10, against SARS-CoV-2 variants.


2020 ◽  
Vol 22 (1) ◽  
pp. 314
Author(s):  
Maria D. Dmitrieva ◽  
Anna A. Voitova ◽  
Maya A. Dymova ◽  
Vladimir A. Richter ◽  
Elena V. Kuligina

Background: The combination of the unique properties of cancer cells makes it possible to find specific ligands that interact directly with the tumor, and to conduct targeted tumor therapy. Phage display is one of the most common methods for searching for specific ligands. Bacteriophages display peptides, and the peptides themselves can be used as targeting molecules for the delivery of diagnostic and therapeutic agents. Phage display can be performed both in vitro and in vivo. Moreover, it is possible to carry out the phage display on cells pre-enriched for a certain tumor marker, for example, CD44 and CD133. Methods: For this work we used several methods, such as phage display, sequencing, cell sorting, immunocytochemistry, phage titration. Results: We performed phage display using different screening systems (in vitro and in vivo), different phage libraries (Ph.D-7, Ph.D-12, Ph.D-C7C) on CD44+/CD133+ and without enrichment U-87 MG cells. The binding efficiency of bacteriophages displayed tumor-targeting peptides on U-87 MG cells was compared in vitro. We also conducted a comparative analysis in vivo of the specificity of the accumulation of selected bacteriophages in the tumor and in the control organs (liver, brain, kidney and lungs). Conclusions: The screening in vivo of linear phage peptide libraries for glioblastoma was the most effective strategy for obtaining tumor-targeting peptides providing targeted delivery of diagnostic and therapeutic agents to glioblastoma.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Alena Ivashenka ◽  
Christian Wunder ◽  
Valerie Chambon ◽  
Roger Sandhoff ◽  
Richard Jennemann ◽  
...  

AbstractGlycoproteins and glycolipids at the plasma membrane contribute to a range of functions from growth factor signaling to cell adhesion and migration. Glycoconjugates undergo endocytic trafficking. According to the glycolipid-lectin (GL-Lect) hypothesis, the construction of tubular endocytic pits is driven in a glycosphingolipid-dependent manner by sugar-binding proteins of the galectin family. Here, we provide evidence for a function of the GL-Lect mechanism in transcytosis across enterocytes in the mouse intestine. We show that galectin-3 (Gal3) and its newly identified binding partner lactotransferrin are transported in a glycosphingolipid-dependent manner from the apical to the basolateral membrane. Transcytosis of lactotransferrin is perturbed in Gal3 knockout mice and can be rescued by exogenous Gal3. Inside enterocytes, Gal3 is localized to hallmark structures of the GL-Lect mechanism, termed clathrin-independent carriers. These data pioneer the existence of GL-Lect endocytosis in vivo and strongly suggest that polarized trafficking across the intestinal barrier relies on this mechanism.


Author(s):  
Jinsong Xia ◽  
Hao Bi ◽  
Qin Yao ◽  
Shen Qu ◽  
Yiqiang Zong

2006 ◽  
Vol 4 (12) ◽  
pp. 51
Author(s):  
B.-H. Lee ◽  
H.-Y. Hong ◽  
S.-J. Oh ◽  
E.-J. Lee ◽  
K. Wan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document