Disruption of Hfe leads to skeletal muscle iron loading and reduction of hemoproteins involved in oxidative metabolism in a mouse model of hereditary hemochromatosis

Author(s):  
Francesca M. Alves ◽  
Marissa K. Caldow ◽  
Sheridan L. Helman ◽  
Scott Ayton ◽  
Ashley I. Bush ◽  
...  
2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Sydney L Stone ◽  
John P Bonamer ◽  
T Alex Ruwe ◽  
Corbin R Azucenas ◽  
Ali Shawki ◽  
...  

2021 ◽  
Author(s):  
Zachary Hawula ◽  
Eriza Secondes ◽  
Daniel Wallace ◽  
Gautam Rishi ◽  
V. Nathan Subramaniam

The flavonol rutin has been shown to possess antioxidant and iron chelating properties in vitro and in vivo. These dual properties are beneficial as therapeutic options to reduce iron accumulation and the generation of reactive oxygen species resultant from excess free iron. The effect of rutin on iron metabolism has been limited to studies performed in wild type mice either injected or fed high iron diets. The effect of rutin on iron overload caused by genetic dysregulation of iron homeostasis has not yet been investigated. In this study we examined the effect of rutin treatment on tissue iron loading in a genetic mouse model of iron overload, which mirrors the iron loading associated with Type 3 hereditary hemochromatosis patients who have a defect in Transferrin Receptor 2. Male Transferrin Receptor 2 knockout mice were administered rutin via oral gavage for 21 continuous days. Following treatment, iron levels in serum, liver, duodenum, and spleen were assessed. In addition, hepatic ferritin protein levels were determined by western blotting, and expression of iron homeostasis genes by quantitative real-time PCR. Rutin treatment resulted in a significant reduction in hepatic ferritin protein expression and serum transferrin saturation. In addition, trends towards decreased iron levels in the liver and serum, and increased serum unsaturated iron binding capacity were observed. This is the first study to explore the utility of rutin as a potential iron chelator and therapeutic in an animal model of genetic iron overload.


1974 ◽  
Vol 61 (2) ◽  
pp. 285-291 ◽  
Author(s):  
ASHA CHANDOLA ◽  
D. SURESH KUMAR ◽  
J. P. THAPLIYAL

SUMMARY Thyroidectomy and orchidectomy led to significant reduction in the oxidative metabolism of isolated liver and skeletal muscle tissue (at 30 °C) in Calotes versicolor. Thyroxine and male hormone were shown to increase this parameter in intact and orchidectomized lizards respectively. The effects of thyroidectomy and orchidectomy on tissue oxygen uptake were not additive. It is supposed that by its effect on oxidative metabolism male hormone may be of a greater physiological importance for reptiles than for other vertebrates. The present results show also that changes in environmental temperature can counteract the depressive effect of orchidectomy on the thyroid of this species of lizard.


2007 ◽  
Vol 6 (3) ◽  
pp. 236-245 ◽  
Author(s):  
Asha Seth ◽  
Jennifer H. Steel ◽  
Donna Nichol ◽  
Victoria Pocock ◽  
Mande K. Kumaran ◽  
...  

1998 ◽  
Vol 95 (5) ◽  
pp. 2492-2497 ◽  
Author(s):  
X. Y. Zhou ◽  
S. Tomatsu ◽  
R. E. Fleming ◽  
S. Parkkila ◽  
A. Waheed ◽  
...  

2007 ◽  
Vol 293 (5) ◽  
pp. R2059-R2069 ◽  
Author(s):  
Steven D. Mason ◽  
Helene Rundqvist ◽  
Ioanna Papandreou ◽  
Roger Duh ◽  
Wayne J. McNulty ◽  
...  

During endurance training, exercising skeletal muscle experiences severe and repetitive oxygen stress. The primary transcriptional response factor for acclimation to hypoxic stress is hypoxia-inducible factor-1α (HIF-1α), which upregulates glycolysis and angiogenesis in response to low levels of tissue oxygenation. To examine the role of HIF-1α in endurance training, we have created mice specifically lacking skeletal muscle HIF-1α and subjected them to an endurance training protocol. We found that only wild-type mice improve their oxidative capacity, as measured by the respiratory exchange ratio; surprisingly, we found that HIF-1α null mice have already upregulated this parameter without training. Furthermore, untrained HIF-1α null mice have an increased capillary to fiber ratio and elevated oxidative enzyme activities. These changes correlate with constitutively activated AMP-activated protein kinase in the HIF-1α null muscles. Additionally, HIF-1α null muscles have decreased expression of pyruvate dehydrogenase kinase I, a HIF-1α target that inhibits oxidative metabolism. These data demonstrate that removal of HIF-1α causes an adaptive response in skeletal muscle akin to endurance training and provides evidence for the suppression of mitochondrial biogenesis by HIF-1α in normal tissue.


2016 ◽  
Vol 8 (334) ◽  
pp. 334ra54-334ra54 ◽  
Author(s):  
Vicent Ribas ◽  
Brian G. Drew ◽  
Zhenqi Zhou ◽  
Jennifer Phun ◽  
Nareg Y. Kalajian ◽  
...  

Impaired estrogen receptor α (ERα) action promotes obesity and metabolic dysfunction in humans and mice; however, the mechanisms underlying these phenotypes remain unknown. Considering that skeletal muscle is a primary tissue responsible for glucose disposal and oxidative metabolism, we established that reduced ERα expression in muscle is associated with glucose intolerance and adiposity in women and female mice. To test this relationship, we generated muscle-specific ERα knockout (MERKO) mice. Impaired glucose homeostasis and increased adiposity were paralleled by diminished muscle oxidative metabolism and bioactive lipid accumulation in MERKO mice. Aberrant mitochondrial morphology, overproduction of reactive oxygen species, and impairment in basal and stress-induced mitochondrial fission dynamics, driven by imbalanced protein kinase A–regulator of calcineurin 1–calcineurin signaling through dynamin-related protein 1, tracked with reduced oxidative metabolism in MERKO muscle. Although muscle mitochondrial DNA (mtDNA) abundance was similar between the genotypes, ERα deficiency diminished mtDNA turnover by a balanced reduction in mtDNA replication and degradation. Our findings indicate the retention of dysfunctional mitochondria in MERKO muscle and implicate ERα in the preservation of mitochondrial health and insulin sensitivity as a defense against metabolic disease in women.


Sign in / Sign up

Export Citation Format

Share Document