scholarly journals Cytotoxic cell populations developed during treatment with tyrosine kinase inhibitors protect autologous CD4+ T cells from HIV-1 infection

2020 ◽  
Vol 182 ◽  
pp. 114203
Author(s):  
Lorena Vigón ◽  
Sara Rodríguez-Mora ◽  
Alejandro Luna ◽  
Virginia Sandonís ◽  
Elena Mateos ◽  
...  
2017 ◽  
Vol 15 (5) ◽  
pp. 421-423 ◽  
Author(s):  
Juan Ambrosioni ◽  
Mayte Coiras ◽  
José Alcamí ◽  
José M. Miró

2017 ◽  
Vol 3 ◽  
pp. 51-52
Author(s):  
S. Rodríguez-Mora ◽  
G. Bautista ◽  
E. Mateos ◽  
V. García ◽  
J.L. Steegmann ◽  
...  

mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Matthew A. Szaniawski ◽  
Adam M. Spivak ◽  
James E. Cox ◽  
Jonathan L. Catrow ◽  
Timothy Hanley ◽  
...  

ABSTRACTMacrophages are susceptible to human immunodeficiency virus type 1 (HIV-1) infection despite abundant expression of antiviral proteins. Perhaps the most important antiviral protein is the restriction factor sterile alpha motif domain and histidine/aspartic acid domain-containing protein 1 (SAMHD1). We investigated the role of SAMHD1 and its phospho-dependent regulation in the context of HIV-1 infection in primary human monocyte-derived macrophages and the ability of various interferons (IFNs) and pharmacologic agents to modulate SAMHD1. Here we show that stimulation by type I, type II, and to a lesser degree, type III interferons share activation of SAMHD1 via dephosphorylation at threonine-592 as a consequence of signaling. Cyclin-dependent kinase 1 (CDK1), a known effector kinase for SAMHD1, was downregulated at the protein level by all IFN types tested. Pharmacologic inhibition or small interfering RNA (siRNA)-mediated knockdown of CDK1 phenocopied the effects of IFN on SAMHD1. A panel of FDA-approved tyrosine kinase inhibitors potently induced activation of SAMHD1 and subsequent HIV-1 inhibition. The viral restriction imposed via IFNs or dasatinib could be overcome through depletion of SAMHD1, indicating that their effects are exerted primarily through this pathway. Our results demonstrate that SAMHD1 activation, but not transcriptional upregulation or protein induction, is the predominant mechanism of HIV-1 restriction induced by type I, type II, and type III IFN signaling in macrophages. Furthermore, SAMHD1 activation presents a pharmacologically actionable target through which HIV-1 infection can be subverted.IMPORTANCEOur experimental results demonstrate that SAMHD1 dephosphorylation at threonine-592 represents a central mechanism of HIV-1 restriction that is common to the three known families of IFNs. While IFN types I and II were potent inhibitors of HIV-1, type III IFN showed modest to undetectable activity. Regulation of SAMHD1 by IFNs involved changes in phosphorylation status but not in protein levels. Phosphorylation of SAMHD1 in macrophages occurred at least in part via CDK1. Tyrosine kinase inhibitors similarly induced SAMHD1 dephosphorylation, which protects macrophages from HIV-1 in a SAMHD1-dependent manner. SAMHD1 is a critical restriction factor regulating HIV-1 infection of macrophages.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1733-1733
Author(s):  
Michael Gutknecht ◽  
Mark-Alexander Schwarzbich ◽  
Julia Salih ◽  
Lothar Kanz ◽  
Helmut R. Salih ◽  
...  

Abstract Abstract 1733 Targeted therapies with tyrosine kinase inhibitors (TKI) have significantly improved the treatment of cancer patients. Ex vivo generated dendritic cells (DC) are commonly used in immunotherapeutic strategies due to their unique ability to initiate adaptive immune responses, and multiple approaches presently aim to combine targeted therapies with immunotherapy. However, as many kinases targeted by TKI are, besides governing tumor cell growth, also involved in the activation of DC, TKI therapy may cause immunoinhibitory side effects. Osteoactivin (GPNMB, DC-HIL) is a type I transmembrane glycoprotein that is detected abundantly in DC but not in monocytes. Its expression on antigen-presenting cells can inhibit T cell activation by binding syndecan-4 (SD-4) on T cells. Here we investigated the effect of the BCR/ABL TKI imatinib, dasatinib and nilotinib, which are approved for the treatment of CML, on the expression of osteoactivin and DC functions. DC were generated from blood monocytes by plastic adherence and exposure to GM-CSF and IL-4. Imatinib, nilotinib or dasatinib were added to the culture medium every second day starting from the first day of culture. In some experiments, toll-like receptor (TLR) ligands (L) (LPS (TLR4L), pam3Cys (TLR2L), poly I:C (TLR3L) or R848 (TLR7/8L) were added on day 6 of culture for maturation of DC. We found that DC generated in the presence of therapeutic concentrations of all three TKI displayed an altered phenotype. Imatinib caused significantly reduced expression of the typical DC markers CD1a, CD83 and the co-stimulatory molecule CD86. Nilotinib reduced the expression of CD1a, CD83, CD86 and the DC-specific C-type lectin receptor DC-SIGN (CD209). Dasatinib impaired expression of CD1a, CD83, CD86, CD80 and DC-SIGN. Most notably, we observed excessive up-regulation of osteoactivin on DC upon treatment with all three TKI. Interestingly, incubation with the immunosuppressive and anti-inflammatory cytokine IL-10 also resulted in osteoactivin over-expression. In line with osteoactivin up-regulation, exposure to TKI resulted in reduced stimulatory capacity of DC in MLR with allogenic T cells that could be restored by addition of blocking anti-osteoactivin antibody. In summary, our data demonstrate that up-regulation of osteoactivin is critically involved in the inhibition of DC function upon TKI exposure. These findings are of great importance for future combinatory approaches using TKI and DC-based immunotherapy and indicate that inhibition of osteoactivin expression or function may serve as a novel strategy to enhance the efficacy of immunotherapeutic interventions in cancer patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4036-4036
Author(s):  
Ziyuan Lu ◽  
Na Xu ◽  
Xuan Zhou ◽  
Guanlun Gao ◽  
Lin Li ◽  
...  

Abstract Background and Objectives: In clinical, conventional Tyrosine Kinase Inhibitors (TKIs) including imatinib, dasatinib, and nilotinib are remarkably effective forms of therapy for certain types of solid cancers as well as Ph+ leukemias. In addition to the BCR-ABL target oncoprotein, they also inhibit certain off-target kinases (Eph, c-KIT, TEC, SRC). Some TKIs affect immune reconstitution as well as the proliferation, function, and activation of T cells. Certain TKIs have been known to have an especially strong effect on CD4+CD25+ T cells, also known as regulatory T Cells (Tregs). There is currently a gap in the clinical data available about on this area of study. Patients and methods: In this study, we collected 108 Peripheral Blood (PB) samples from patients in the Chronic Phase (CP) of Chronic Myeloid Leukemia (CML) at the time of diagnosis (n=31) and also the TKIs treatment. Groups consisted of individuals treated with TKIs like imatinib (n=12), dasatinib (n=11) and nilotinib (n=8), as well as healthy controls (n=15). We evaluated the quantity and function of Tregs from patients in the CML-CP at the time of diagnosis and during treatment with TKIs. Results: It was found that at diagnosis, patients with CML had a similar proportion and absolute number of lymphocytes compared to healthy donors. After TKIs treatment, proportions and absolute numbers of total T cellsACD4+ T cells and Tregs decreased at different degree. Moreover, thedecrease would be more and more significant as time goes on.Our results indicated that although these three TKIs show similar inhibitory effects in the proportion and number of Tregs in vivo, they have differential effects on the functions of Tregs in vitro. The proliferation, suppression, and expression of suppressive cytokines (IL-4,IL-10 and TGF-β) as well as suppression-associated molecules (FoxP3, GITR, and CTLA-4) of Tregs decreased in groups treated with imatinib and dasatinib. The decrease was not significant in the nilotinib-treated group. Conclusions: The results showed that imatinib and dasatinib have stronger inhibitory roles than nilotinib when it comes to regulating the number and functions of Tregs. These findings can be used to argue in favor of calls for personalized treatment and follow-up of CML patients during TKIs treatment, particularly for those patients who received combination therapy with allo-transplantation and post-transplant TKIs. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 92 (20) ◽  
Author(s):  
Alessandra Noto ◽  
Francesco A. Procopio ◽  
Riddhima Banga ◽  
Madeleine Suffiotti ◽  
Jean-Marc Corpataux ◽  
...  

ABSTRACTA recent study conducted in blood has proposed CD32 as the marker identifying the “elusive” HIV reservoir. We have investigated the distribution of CD32+CD4 T cells in blood and lymph nodes (LNs) of HIV-1-uninfected subjects and viremic untreated and long-term-treated HIV-1-infected individuals and their relationship with PD-1+CD4 T cells. The frequency of CD32+CD4 T cells was increased in viremic compared to treated individuals in LNs, and a large proportion (up to 50%) of CD32+cells coexpressed PD-1 and were enriched within T follicular helper (Tfh) cells. We next investigated the role of LN CD32+CD4 T cells in the HIV reservoir. Total HIV DNA was enriched in CD32+and PD-1+CD4 T cells compared to CD32−and PD-1−cells in both viremic and treated individuals, but there was no difference between CD32+and PD-1+cells. There was no enrichment of latently infected cells with inducible HIV-1 in CD32+versus PD-1+cells in antiretroviral therapy (ART)-treated individuals. HIV-1 transcription was then analyzed in LN memory CD4 T cell populations sorted on the basis of CD32 and PD-1 expression. CD32+PD-1+CD4 T cells were significantly enriched in cell-associated HIV RNA compared to CD32−PD-1−(averages of 5.2-fold in treated individuals and 86.6-fold in viremics), CD32+PD-1−(2.2-fold in treated individuals and 4.3-fold in viremics), and CD32−PD-1+(2.2-fold in ART-treated individuals and 4.6-fold in viremics) cell populations. Similar levels of HIV-1 transcription were found in CD32+PD-1−and CD32−PD-1+CD4 T cells. Interestingly, the proportion of CD32+and PD-1+CD4 T cells negatively correlated with CD4 T cell counts and length of therapy. Therefore, the expression of CD32 identifies, independently of PD-1, a CD4 T cell population with persistent HIV-1 transcription and coexpression of CD32 and PD-1, the CD4 T cell population with the highest levels of HIV-1 transcription in both viremic and treated individuals.IMPORTANCEThe existence of long-lived latently infected resting memory CD4 T cells represents a major obstacle to the eradication of HIV infection. Identifying cell markers defining latently infected cells containing replication-competent virus is important in order to determine the mechanisms of HIV persistence and to develop novel therapeutic strategies to cure HIV infection. We provide evidence that PD-1 and CD32 may have a complementary role in better defining CD4 T cell populations infected with HIV-1. Furthermore, CD4 T cells coexpressing CD32 and PD-1 identify a CD4 T cell population with high levels of persistent HIV-1 transcription.


Sign in / Sign up

Export Citation Format

Share Document