Covariation among behavioral traits and hatching time in zebrafish

2021 ◽  
pp. 104546
Author(s):  
Bruno William Fernandes Silva ◽  
Maria Elisa Leite-Ferreira ◽  
Fabiano Peres Menezes ◽  
Ana Carolina Luchiari
1972 ◽  
Vol 9 (2) ◽  
pp. 102-103
Author(s):  
Kenji Ichinoe ◽  
Osamu Yamamuro ◽  
Shozo Suzuki

2021 ◽  
Author(s):  
Haifeng Li ◽  
Xinyu ZHang ◽  
Yi Wu ◽  
Feng ZHang ◽  
CHunlin Li

Abstract Personality has been observed in a variety of animal taxa with important implications in ecology and evolution. Exploring the influence of environmental temperature during early life on personality could help to understand the ontogeny of this phenotypic trait in animals. In this study, we reared newborn mosquitofish Gambusia affinis at high (30°C) and low (25°C) water temperatures and measured their shyness and exploration upon sexual maturity. We tested the repeatability of each behavioral trait; the correlation between them; and the effects of rearing temperature, sex, and body length on the behaviors. When growing up at low temperatures, female fish exhibited repeatability in shyness and exploration, and males exhibited marginal repeatability in shyness. However, neither of the 2 behaviors were repeatable when the fish were reared at high temperatures. There was a negative correlation between shyness and exploration, indicating that the 2 behaviors comprise a behavioral syndrome in this species. Mosquitofish reared at high temperatures were more explorative than those reared at low temperatures, while there was no difference in shyness between the 2 treatments. Body length and sex had no significant effects on the average values of the 2 behaviors. The results indicate that environmental temperature during early life could shape the personality of mosquitofish and modify the average of the behavioral traits. These findings might provide insights to understand the ontogeny of animal personality and how changes in environmental temperature influence animal dispersal by shaping their personality.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 315
Author(s):  
Luca Finetti ◽  
Thomas Roeder ◽  
Girolamo Calò ◽  
Giovanni Bernacchia

Tyramine is a neuroactive compound that acts as neurotransmitter, neuromodulator, and neurohormone in insects. Three G protein-coupled receptors, TAR1-3, are responsible for mediating the intracellular pathway in the complex tyraminergic network. TAR1, the prominent player in this system, was initially classified as an octopamine receptor which can also be activated by tyramine, while it later appeared to be a true tyramine receptor. Even though TAR1 is currently considered as a well-defined tyramine receptor and several insect TAR1s have been characterized, a defined nomenclature is still inconsistent. In the last years, our knowledge on the structural, biochemical, and functional properties of TAR1 has substantially increased. This review summarizes the available information on TAR1 from different insect species in terms of basic structure, its regulation and signal transduction mechanisms, and its distribution and functions in the brain and the periphery. A special focus is given to the TAR1-mediated intracellular signaling pathways as well as to their physiological role in regulating behavioral traits. Therefore, this work aims to correlate, for the first time, the physiological relevance of TAR1 functions with the tyraminergic system in insects. In addition, pharmacological studies have shed light on compounds with insecticidal properties having TAR1 as a target and on the emerging trend in the development of novel strategies for pest control.


2021 ◽  
Vol 236 ◽  
pp. 105273
Author(s):  
Mehmet Akif Boz ◽  
Musa Sarıca ◽  
Umut Sami Yamak ◽  
Kadir Erensoy

Human Affairs ◽  
2020 ◽  
Vol 30 (4) ◽  
pp. 587-596
Author(s):  
Elena Popa

AbstractThis paper investigates the concept of behavioral autonomy in Artificial Life by drawing a parallel to the use of teleological notions in the study of biological life. Contrary to one of the leading assumptions in Artificial Life research, I argue that there is a significant difference in how autonomous behavior is understood in artificial and biological life forms: the former is underlain by human goals in a way that the latter is not. While behavioral traits can be explained in relation to evolutionary history in biological organisms, in synthetic life forms behavior depends on a design driven by a research agenda, further shaped by broader human goals. This point will be illustrated with a case study on a synthetic life form. Consequently, the putative epistemic benefit of reaching a better understanding of behavioral autonomy in biological organisms by synthesizing artificial life forms is subject to doubt: the autonomy observed in such artificial organisms may be a mere projection of human agency. Further questions arise in relation to the need to spell out the relevant human aims when addressing potential social or ethical implications of synthesizing artificial life forms.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 487
Author(s):  
Lillian Collins ◽  
Grant D. Paton ◽  
Sara A. Gagné

The urbanization of landscapes filters bird communities to favor particular species traits, driven in part by the changes that homeowners make to the amount and quality of habitat in yards. We suggest that an ultimate driver of these proximate mechanisms underlying bird community change with respect to urbanization is the likeability of species traits by urban residents. We hypothesize that bird species likeability, modulated by species traits, influences the degree to which homeowners alter the availability and quality of habitat on their properties and thereby affects species population sizes in urbanized landscapes. We refer to this new hypothesis as the Likeable, therefore Abundant Hypothesis. The Likeable, therefore Abundant Hypothesis predicts that (1) bird species likeability varies with species morphological and behavioral traits, (2) homeowners use trait-based likeability as a motivator to modify habitat availability and quality on their properties, and (3) residential habitat availability and quality influences species populations at landscape scales. We tested the first prediction of the Likeable, therefore Abundant Hypothesis using a survey of 298 undergraduate students at the University of North Carolina at Charlotte who were asked to rank their preferences for 85 forest generalist and edge/open country songbird species grouped according to 10 morphological and behavioral traits. Survey respondents preferred very small, primarily blue or black species that are insectivorous, aerial or bark foragers, residents, and culturally unimportant. On the other hand, respondents disliked large or very large, primarily yellow or orange species that forage on the ground and/or forage by flycatching, are migratory, and are culturally important. If the Likeable, therefore Abundant Hypothesis is true, natural resource managers and planners could capitalize on the high likeability of species that are nevertheless negatively affected by urbanization to convince homeowners and residents to actively manage their properties for species conservation.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5014
Author(s):  
Giovanni Benelli

The Editorial outlines recent research advances in green insecticide research. Particular attention is devoted to studies shedding light on the modes of action and non-target toxicity of natural substances of plant origin. Research focusing on the development of new formulations (including those relating to nano-objects) to magnify the effectiveness and stability of green insecticides in the field represents key advances. Herein, a carefully reviewed selection of cutting edge articles about green pesticide development recently published in Molecules is presented. The impact of sub-lethal doses of green insecticides on insect behavioral traits is still overlooked, representing a timely challenge for further research.


2015 ◽  
Vol 10 (6) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Christine Zitzelsberger ◽  
Gerhard Buchbauer

This work is an update of a recently published review and is consistently referred to this article and recent findings about plants’ indirect defense are added on. Herbivore induced plant volatiles (HIPVs) and their effects on the third trophic level that involves predators and parasitoids are discussed. The fact that plants are not passive individuals is confirmed on the basis of several studies. Plants can perceive and respond to cues in their environments with plastic morphological, physiological and behavioral traits. Plasticity allows plants to tailor their defenses to their current and expected risks caused by herbivores. The “cry for help” of plants is also observed from the carnivores’ point of view. The volatile mixture contains crucial information for decisions of carnivorous insects. Furthermore, the most important methods to examine the behavioral response of carnivorous insects to HIPVs are presented not only in laboratory set ups but also in the field. Manipulations of plants by silencing genes or over-expressing genes can help to understand mechanisms of indirect defense. Various interesting examples of indirect defense reveal the possibility to use HIPVs in biological control. Therefore, the application of synthetic pesticides, that pollute the environment, may be reduced in the future.


Author(s):  
Megan E. Olshavsky ◽  
Carolyn E. Jones ◽  
Hongjoo J. Lee ◽  
Marie-H. Monfils

Sign in / Sign up

Export Citation Format

Share Document