scholarly journals Disposable and cost-effective label-free electrochemical immunosensor for prolactin based on bismuth sulfide nanorods with polypyrrole

2022 ◽  
Vol 143 ◽  
pp. 107948
Author(s):  
Rajalakshmi Sakthivel ◽  
Lu-Yin Lin ◽  
Tzung-Han Lee ◽  
Xinke Liu ◽  
Jr-Hau He ◽  
...  
The Analyst ◽  
2020 ◽  
Vol 145 (14) ◽  
pp. 5019-5026 ◽  
Author(s):  
Suchanat Boonkaew ◽  
Prinjaporn Teengam ◽  
Sakda Jampasa ◽  
Sirirat Rengpipat ◽  
Weena Siangproh ◽  
...  

A label-free electrochemical immunosensor for detecting ferritin using a paper-based analytical device (ePAD) was created.


The Analyst ◽  
2021 ◽  
Author(s):  
Guangyuan Wang ◽  
jiayi Chen ◽  
Lu Huang ◽  
Yi-Ting Chen ◽  
Yanxia Li

The cost-effective construction of self-designed conductive graphene patterns is crucial to the fabrication of graphene-based electrochemical devices. Here, a label-free Carcinoembryonic antigen (CEA) electrochemical immunosensor is developed based on surface...


2020 ◽  
Vol 28 ◽  
Author(s):  
Hayati Filik ◽  
Asiye Aslıhan Avan ◽  
Mustafa Özyürek

: The prostate-specific antigen (PSA) has been considered a crucial serological marker for distinguishing prostate based cancer. This surveys recent progress in the construction of nanomaterial-based electrochemical immunosensors for a PSA. This review (from 2015 to 2020) reports the latest progress in PSA sensing based on the employ of different types of nanostructured materials. The most popular used nanostructured materials are metal, metal oxide, carbon-based nanomaterials, and their hybrid architectures utilized for distinct amplification protocols. In this review, the electrochemical immunosensors for prostate-specific antigen sensing are classified into three categories such as sandwich type@labeled, label free@nonlabeled and aptamer-based electrochemical immunosensor.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rozita Abolhasan ◽  
Balal Khalilzadeh ◽  
Hadi Yousefi ◽  
Sahar Samemaleki ◽  
Forough Chakari-Khiavi ◽  
...  

AbstractIn the present article, we developed a highly sensitive label-free electrochemical immunosensor based on NiFe-layered double hydroxides (LDH)/reduced graphene oxide (rGO)/gold nanoparticles modified glassy carbon electrode for the determination of receptor tyrosine kinase-like orphan receptor (ROR)-1. In this electrochemical immunoassay platform, NiFe-LDH/rGO was used due to great electron mobility, high specific surface area and flexible structures, while Au nanoparticles were prepared and coated on the modified electrodes to improve the detection sensitivity and ROR1 antibody immobilizing (ROR1Ab). The modification procedure was approved by using cyclic voltammetry and differential pulse voltammetry based on the response of peak current to the step by step modifications. Under optimum conditions, the experimental results showed that the immunosensor revealed a sensitive response to ROR1 in the range of 0.01–1 pg mL−1, and with a lower limit of quantification of 10 attogram/mL (10 ag mL−1). Furthermore, the designed immunosensor was applied for the analysis of ROR1 in several serum samples of chronic lymphocytic leukemia suffering patients with acceptable results, and it also exhibited good selectivity, reproducibility and stability.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 793
Author(s):  
Uroš Zupančič ◽  
Joshua Rainbow ◽  
Pedro Estrela ◽  
Despina Moschou

Printed circuit boards (PCBs) offer a promising platform for the development of electronics-assisted biomedical diagnostic sensors and microsystems. The long-standing industrial basis offers distinctive advantages for cost-effective, reproducible, and easily integrated sample-in-answer-out diagnostic microsystems. Nonetheless, the commercial techniques used in the fabrication of PCBs produce various contaminants potentially degrading severely their stability and repeatability in electrochemical sensing applications. Herein, we analyse for the first time such critical technological considerations, allowing the exploitation of commercial PCB platforms as reliable electrochemical sensing platforms. The presented electrochemical and physical characterisation data reveal clear evidence of both organic and inorganic sensing electrode surface contaminants, which can be removed using various pre-cleaning techniques. We demonstrate that, following such pre-treatment rules, PCB-based electrodes can be reliably fabricated for sensitive electrochemical biosensors. Herein, we demonstrate the applicability of the methodology both for labelled protein (procalcitonin) and label-free nucleic acid (E. coli-specific DNA) biomarker quantification, with observed limits of detection (LoD) of 2 pM and 110 pM, respectively. The proposed optimisation of surface pre-treatment is critical in the development of robust and sensitive PCB-based electrochemical sensors for both clinical and environmental diagnostics and monitoring applications.


RSC Advances ◽  
2015 ◽  
Vol 5 (31) ◽  
pp. 23990-23998 ◽  
Author(s):  
Gaoling Liang ◽  
Zhongjun Zhao ◽  
Yin Wei ◽  
Kunping Liu ◽  
Wenqian Hou ◽  
...  

A simple, label-free and cost-effective localized surface plasmon resonance (LSPR) immunosensing method was developed for detection of alpha-fetoprotein (AFP).


2021 ◽  
Author(s):  
Xiangrong Huang ◽  
Na Wu ◽  
Wenxiu Liu ◽  
Yazhuo Shang ◽  
Honglai Liu ◽  
...  

In this work, a novel redox hydrogel was proposed for ultrasensitive label-free electrochemical detection of carcinoembryonic antigen (CEA). The redox hydrogel composed by cellulose nanocrystalline (CNC), methylene blue (MB), multi-walled...


The Analyst ◽  
2021 ◽  
Author(s):  
Xinke Liu ◽  
Lu-Yin Lin ◽  
Fu-Yen Tseng ◽  
Yu-Cheng Tan ◽  
Jian Li ◽  
...  

Matrix metalloproteinase-1 (MMP-1) is associated with many types of cancers, including oral, colorectal, and brain cancers. This paper describes the fabrication of an MMP-1 immunosensor based on a gold nanoparticle/polyethyleneimine/reduced...


Chemosensors ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 49
Author(s):  
Pushap Raj ◽  
Man Hwan Oh ◽  
Kyudong Han ◽  
Tae Yoon Lee

Bacterial infections have become a significant challenge in terms of public health, the food industry, and the environment. Therefore, it is necessary to address these challenges by developing a rapid, cost-effective, and easy-to-use biosensor for early diagnosis of bacterial pathogens. Herein, we developed a simple, label-free, and highly sensitive immunosensor based on electrochemical detection using the Au@MoS₂–PANI nanocomposite. The conductivity of the glassy carbon electrode is greatly enhanced using the Au@MoS₂–PANI nanocomposite and a self-assembled monolayer of mercaptopropionic acid on the gold nanoparticle surface was employed for the covalent immobilization of antibodies to minimize the nonspecific adsorption of bacterial pathogens on the electrode surface. The biosensor established a high selectivity and sensitivity with a low limit of detection of 10 CFU/mL, and detected Escherichia coli within 30 min. Moreover, the developed biosensor demonstrated a good linear detection range, practical utility in urine samples, and electrode regenerative studies.


Sign in / Sign up

Export Citation Format

Share Document