Pilot-scale anaerobic co-digestion of food and garden waste: Methane potential, performance and microbial analysis

2022 ◽  
Vol 157 ◽  
pp. 106331
Author(s):  
Priscila Liane Biesdorf Borth ◽  
Jessica Klarosk Helenas Perin ◽  
Arthur Ribeiro Torrecilhas ◽  
Daiane Dias Lopes ◽  
Samantha Christine Santos ◽  
...  
2020 ◽  
Vol 12 (18) ◽  
pp. 7463
Author(s):  
Marie E. Kirby ◽  
Muhammad W. Mirza ◽  
James Davies ◽  
Shane Ward ◽  
Michael K. Theodorou

Chicken manure is an agricultural by-product that is a problematic feedstock for anaerobic digestion due to its high nitrogen content inhibiting methane yields. This research examines a novel pilot-scale method of ammonia stripping, the nitrogen recovery process (NRP) developed by Alchemy Utilities Ltd. The NRP was designed to remove and recover nitrogen from chicken manure and two different operating conditions were examined. Both operating conditions demonstrated successful nitrogen removal and recovery. The biochemical methane potential assays were used to compare the digestibility of the NRP-treated chicken manures to that of a fresh chicken manure control. Overall, the biochemical methane potential assays demonstrated that some NRP-treated chicken manure treatments produced significantly more methane compared to untreated manure, with no inhibition occurring in relation to ammonium. However, some of the NRP-treated chicken manures produced similar or lower methane yields compared to fresh chicken manure. The NRP requires further development to improve the efficiency of the pilot-scale unit for commercial-scale operation and longer-term continuous anaerobic digestion trials are required to determine longer-term methane yield and ammonium inhibition effects. However, these initial results clearly demonstrate the technology’s potential and novel application for decentralised, on-farm nitrogen recovery and subsequent anaerobic digestion of chicken manure.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2628 ◽  
Author(s):  
Gómez ◽  
Ramos-Suárez ◽  
Fernández ◽  
Muñoz ◽  
Tey ◽  
...  

Traditional plug-flow anaerobic reactors (PFRs) are characterized by lacking a mixing system and operating at high total solid concentrations, which limits their applicability for several kinds of manures. This paper studies the performance of a novel modified PFR for the treatment of pig manure, characterized by having an internal sludge mixing system by biogas recirculation in the range of 0.270–0.336 m3 m−3 h−1. The influence on the methane yield of four operating parameters (recirculation rate, hydraulic retention time, organic loading rate, and total solids) was evaluated by running four modified PFRs at the pilot scale in mesophilic conditions. While the previous biodegradability of organic matter by biochemical methane potential tests were between 31% and 47% with a methane yield between 125 and 184 LCH4 kgVS−1, the PFRs showed a suitable performance with organic matter degradation between 25% and 51% and a methane yield of up to 374 LCH4 kgVS−1. Operational problems such as solid stratification, foaming, or scum generation were avoided.


Author(s):  
Priscila Liane Biesdorf Borth ◽  
Jessica Klarosk Helenas Perin ◽  
Arthur Ribeiro Torrecilhas ◽  
Nicole Caldas Pan ◽  
Emília Kiyomi Kuroda ◽  
...  

2020 ◽  
Vol 41 (2) ◽  
pp. 135
Author(s):  
Andreza Carla Lopes Andre ◽  
Miriam Cleide Cavalcante de Amorim ◽  
Kessia Caroline Dantas da Silva ◽  
Paula Tereza Souza e Silva

Ultrafiltration clarifies fruit juices, in the food industry, but generates retentive, recalcitrant wastewater, which, by its organic nature, may present a potential for biodegradation and methane production. This study aimed to evaluate the biochemical methane potential (BMP) in wastewater from the processing of unripe green acerola, obtaining the mass balance and the speed of organic load removal in COD terms. The BMP assays followed the German Guidelines VDI 4630, by applying three COD loads per liter of reactor vial (0,86 g CDOAplied L-1R, 1,5 g CDOAplied L-1R e 2,0 g CDOAplied L-1R), , in batches, inoculated with the anaerobic sludge from reactors treating domestic sewage, at 30 0C. The pH, COD, and methane production were evaluated every 48 hours. The biodegradability and the decay rate constant of the COD (Kd) were determined, thus obtaining the methanized COD, the COD for the formation of new cells, and the COD present in the wastewater, in the form of volatile acids. The best BMP was 0.100 L CH4 g -1 CDORemoved, the percentages of methanization were above 62 %, and the highest Kd occurred for the lowest load applied. The anaerobic digestion of the wastewater proved viable for in full-scale, with its application being suggested at a pilot scale.  


2013 ◽  
Vol 827 ◽  
pp. 84-90 ◽  
Author(s):  
Maurizio Carlini ◽  
Sonia Castellucci ◽  
Silvia Cocchi

One of the most promising processes to exploit Solid Olive-Mill Waste (SOMW) for energy production is anaerobic digestion. An experimental study has been carried out on SOMW and inoculum, consisting of Cattle Slurry Digested (CSD) and coming from an anaerobic digestion plant. A substrate with an optimal supply ratio equal to 2:1 has been investigated in a reactor at 37°C by analysing the biogas production. The Biochemical Methane Potential (BMP) test has been carried out, monitoring pH, biogas production (amount and composition). According to the tests results, SOMWs needed to be diluted and inoculated, moreover the pH control is foundamental in order to obtain a significant biogas production. Anaerobic digestion plant of SOMW should be promoted in Mediterranean countries as an environmentally sound option for waste management and energy production, since olive mills are very widespread agro-industries in this area.


2018 ◽  
Vol 43 ◽  
pp. 1-14 ◽  
Author(s):  
Priyabrata Pradhan ◽  
Amit Arora ◽  
Sanjay M. Mahajani

2019 ◽  
Vol 9 (2) ◽  
pp. 289-299
Author(s):  
Joy Riungu ◽  
Mariska Ronteltap ◽  
Jules B. van Lier

Abstract Biochemical energy recovery using digestion and co-digestion of faecal matter collected from urine diverting dehydrating toilet faeces (UDDT-F) and mixed organic market waste (OMW) was studied under laboratory- and pilot-scale conditions. Laboratory-scale biochemical methane potential (BMP) tests showed an increase in methane production with an increase in OMW fraction in the feed substrate. In subsequent pilot-scale experiments, one-stage and two-stage plug flow digester were researched, applying UDDT-F:OMW ratios of 4:1 and 1:0, at about 10 and 12% total solids (TS) slurry concentrations. Comparable methane production was observed in one-stage (Ro-4:1,12%) (314 ± 15 mL CH4/g VS added) and two-stage (Ram-4:1,12%) (325 ± 12 mL CH4/g VS added) digesters, when applying 12% TS slurry concentration. However, biogas production in Ram-4:1,12% digester (571 ± 25 mL CH4/g VS added) was about 12% higher than in Ro-4:1,12%, significantly more than the slight difference in methane production, i.e. 3–4%. The former was attributed to enhanced waste solubilisation and increased CO2 dissolution, resulting from mixing the bicarbonate-rich methanogenic effluent for neutralisation purposes with the low pH (4.9) influent acquired from the pre-acidification stage. Moreover, higher process stability was observed in the first parts of the plug flow two-stage digester, characterised by lower VFA concentrations.


2016 ◽  
Vol 73 (9) ◽  
pp. 2085-2092 ◽  
Author(s):  
Yandong Yang ◽  
Liang Zhang ◽  
Xiaoyu Han ◽  
Shujun Zhang ◽  
Baikun Li ◽  
...  

The partial nitritation/anammox (PN/A) process has been applied to ammonium-rich wastewater treatment, but the operational boundary has not been well determined for long-term stability. This pilot-scale study was targeted at a single-stage PN/A process using a sequencing batch reactor (SBR) (volume: 53 m3) and granulated activated sludge. The maximum nitrogen removal rate reached 0.83 kg N/(m3 · d). Microbial analysis suggested that ammonium oxidizing bacteria were mainly present in small sludge flocs while anammox bacteria were prone to grow in large sludge granules. The PN/A performance was enhanced when dissolved oxygen (DO) was increased from 0.25 to 0.76 mg/L, and deteriorated at DO higher than 1.15 mg/L. The PN/A was inhibited at free ammonia (FA) over 77.0 mg/L. High DO or FA concentrations inhibited anammox activity and further induced high and inhibitory nitrite concentrations. Therefore, appropriate DO and FA concentrations should be controlled to achieve single-stage PN/A in SBRs.


Sign in / Sign up

Export Citation Format

Share Document