An innovative approach in the synthesis of solid acid catalyst from sugarcane bagasse for the esterification of oleic acid and methanol

2022 ◽  
Vol 157 ◽  
pp. 106351
Author(s):  
Alchris Woo Go ◽  
Yi Chang Xiao ◽  
Kristelle L. Quijote ◽  
Chintya Gunarto ◽  
Roxanne Kathlyn O. Alivio ◽  
...  
2019 ◽  
Vol 130 ◽  
pp. 510-523 ◽  
Author(s):  
Ken P. Flores ◽  
Jan Laurence O. Omega ◽  
Luis K. Cabatingan ◽  
Alchris W. Go ◽  
Ramelito C. Agapay ◽  
...  

2018 ◽  
Vol 156 ◽  
pp. 03002
Author(s):  
Iwan Ridwan ◽  
Mukhtar Ghazali ◽  
Adi Kusmayadi ◽  
Resza Diwansyah Putra ◽  
Nina Marlina ◽  
...  

The oleic acid solubility in methanol is low due to two phase separation, and this causes a slow reaction time in biodiesel production. Tetrahydrofuran as co-solvent can decrease the interfacial surface tension between methanol and oleic acid. The objective of this study was to investigate the effect of co-solvent, methanol to oleic acid molar ratio, catalyst amount, and temperature of the reaction to the free fatty acid conversion. Oleic acid esterification was conducted by mixing oleic acid, methanol, tetrahydrofuran and Amberlyst 15 as a solid acid catalyst in a batch reactor. The Amberlyst 15 used had an exchange capacity of 2.57 meq/g. Significant free fatty acid conversion increments occur on biodiesel production using co-solvent compared without co-solvent. The highest free fatty acid conversion was obtained over methanol to the oleic acid molar ratio of 25:1, catalyst use of 10%, the co-solvent concentration of 8%, and a reaction temperature of 60°C. The highest FFA conversion was found at 28.6 %, and the steady state was reached after 60 minutes. In addition, the use of Amberlyst 15 oleic acid esterification shows an excellent performance as a solid acid catalyst. Catalytic activity was maintained after 4 times repeated use and reduced slightly in the fifth use.


2020 ◽  
Vol 152 ◽  
pp. 320-330 ◽  
Author(s):  
Czarina M. Mendaros ◽  
Alchris W. Go ◽  
Winston Jose T. Nietes ◽  
Babe Eden Joy O. Gollem ◽  
Luis K. Cabatingan

2019 ◽  
Vol 138 ◽  
pp. 489-501 ◽  
Author(s):  
Glorie Mae A. Bureros ◽  
April A. Tanjay ◽  
Dan Elmer S. Cuizon ◽  
Alchris W. Go ◽  
Luis K. Cabatingan ◽  
...  

2010 ◽  
Vol 173 ◽  
pp. 140-145 ◽  
Author(s):  
Nor Asikin Mohamad Nordin ◽  
Nadia Farhana Adnan ◽  
Aznira Alias ◽  
Wan Nor Roslam Wan Isahak ◽  
Jumat Salimon ◽  
...  

The syntheses of estolides via condensation reaction of oleic acid were investigated using heterogenous catalysts. In this study HClO4 is supported onto suitable support to make it environmentally friendly. A series of solid acid catalyst containing 5-45 % of perchloric acid supported onto silica was synthesized and characterized using XRD, BET surface area measurement, TEM and XPS surface analysis. Silica modified with perchloric acid was found to be efficient and environmentally benign solid acid catalyst for estolide synthesis. The reaction was performed at 70 oC for 10 hours to give oleic-oleic monoestolide acid (m/z 563.51 as M-H)-. Based on the experimental findings above, optimum catalytic performance was with 15 % HClO4 loading onto SiO2 to give 98.98 % conversion of the oleic acid with 63.98 % oleic-oleic monoestolide acid selectivity.


MRS Advances ◽  
2018 ◽  
Vol 3 (47-48) ◽  
pp. 2865-2873 ◽  
Author(s):  
Shiba Adhikari ◽  
Zach Hood ◽  
Nidia Gallego ◽  
Cristian Contescu

The production of biodiesel by the esterification of oleic acid, as an example of free fatty acid (FFA), was explored by using a new solid acid catalyst derived from lignin, a highly abundant low-cost biomass material. The catalyst was synthesized from lignin-derived carbon fiber by straightforward sulfonation and contains 1.86 mmol/g of sulfonic acid (-SO3H) groups. The catalyst was characterized by a variety of techniques including PXRD, TGA, TPD-MS, SEM, and XPS to understand the surface chemistry and the result of sulfonation. It was found that the sulfonated lignin-derived carbon fiber (CF-SO3H) catalyst was very efficient at esterifying oleic acid at 80 oC in 4 hours, with 10 wt. % catalyst (in terms of oleic acid content) and at a 10:1 molar ratio of methanol: oleic acid with a yield of 92%. Furthermore, the catalyst can be reused with no significant loss in activity after 4 cycles. Hence, synthesizing solid acid catalysts from lignin-derived carbon fiber affords a novel strategy for producing biodiesel via ‘green chemistry’.


Sign in / Sign up

Export Citation Format

Share Document