Discovery of anti-infective adipostatins through bioactivity-guided isolation and heterologous expression of a type III polyketide synthase

2021 ◽  
pp. 104925
Author(s):  
Lukuan Hou ◽  
Ying Li ◽  
Qihao Wu ◽  
Miyang Li ◽  
Ethan A. Older ◽  
...  
Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4594
Author(s):  
Constanze Lasch ◽  
Nils Gummerlich ◽  
Maksym Myronovskyi ◽  
Anja Palusczak ◽  
Josef Zapp ◽  
...  

Natural products are a valuable source of biologically active compounds with potential applications in medicine and agriculture. Unprecedented scaffold diversity of natural products and biocatalysts from their biosynthetic pathways are of fundamental importance. Heterologous expression and refactoring of natural product biosynthetic pathways are generally regarded as a promising approach to discover new secondary metabolites of microbial origin. Here, we present the identification of a new group of alkylresorcinols after transcriptional activation and heterologous expression of the type III polyketide synthase of Micromonospora endolithica. The most abundant compounds loseolamycins A1 and A2 have been purified and their structures were elucidated by NMR. Loseolamycins contain an unusual branched hydroxylated aliphatic chain which is provided by the host metabolism and is incorporated as a starter fatty acid unit. The isolated loseolamycins show activity against gram-positive bacteria and inhibit the growth of the monocot weed Agrostis stolonifera in a germination assay. The biosynthetic pathway leading to the production of loseolamycins is proposed in this paper.


2015 ◽  
Vol 14 (1) ◽  
Author(s):  
Anyarat Thanapipatsiri ◽  
Jan Claesen ◽  
Juan-Pablo Gomez-Escribano ◽  
Mervyn Bibb ◽  
Arinthip Thamchaipenet

Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 673
Author(s):  
Jiang Chen ◽  
Shanwen Zhang ◽  
Yingying Chen ◽  
Xinpeng Tian ◽  
Yucheng Gu ◽  
...  

Verrucosispora sp. SCSIO 07399, a rare marine-derived actinomycete, produces a set of ansamycin-like polyketides kendomycin B–D (1–3) which possess potent antibacterial activities and moderate tumor cytotoxicity. Structurally, kendomycin B–D contain a unique aliphatic macrocyclic ansa scaffold in which the highly substituted pyran ring is connected to the quinone moiety. In this work, a type I/type III polyketide synthase (PKS) hybrid biosynthetic gene cluster coding for assembly of kendomycin B (kmy), and covering 33 open reading frames, was identified from Verrucosispora sp. SCSIO 07399. The kmy cluster was found to be essential for kendomycin B biosynthesis as verified by gene disruption and heterologous expression. Correspondingly, a biosynthetic pathway was proposed based on bioinformatics, cluster alignments, and previous research. Additionally, the role of type III PKS for generating the precursor unit 3,5-dihydroxybenzoic acid (3,5-DHBA) was demonstrated by chemical complementation, and type I PKS executed the polyketide chain elongation. The kmy cluster was found to contain a positive regulatory gene kmy4 whose regulatory effect was identified using real-time quantitative PCR (RT-qPCR). These advances shed important new insights into kendomycin B biosynthesis and help to set the foundation for further research aimed at understanding and exploiting the carbacylic ansa scaffold.


2006 ◽  
Vol 2 (9) ◽  
pp. 494-502 ◽  
Author(s):  
Michael B Austin ◽  
Tamao Saito ◽  
Marianne E Bowman ◽  
Stephen Haydock ◽  
Atsushi Kato ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
pp. 753-762
Author(s):  
Delong Kan ◽  
Di Zhao ◽  
Pengfei Duan

AbstractStudies have shown that abundant and various flavonoids accumulate in chili pepper (Capsicum), but there are few reports on the genes that govern chili pepper flavonoid biosynthesis. Here, we report the comprehensive identification of genes encoding type III polyketide synthase (PKS), an important enzyme catalyzing the generation of flavonoid backbones. In total, 13, 14 and 13 type III PKS genes were identified in each genome of C. annuum, C. chinense and C. baccatum, respectively. The phylogeny topology of Capsicum PKSs is similar to those in other plants, as it showed two classes of genes. Within each class, clades can be further identified. Class II genes likely encode chalcone synthase (CHS) as they are placed together with the Arabidopsis CHS gene, which experienced extensive expansions in the genomes of Capsicum. Interestingly, 8 of the 11 Class II genes form three clusters in the genome of C. annuum, which is likely the result of tandem duplication events. Four genes are not expressed in the tissues of C. annuum, three of which are located in the clusters, indicating that a portion of genes was pseudogenized after tandem duplications. Expression of two Class I genes was complementary to each other, and all the genes in Class II were not expressed in roots of C. annuum. Two Class II genes (CA00g90790 and CA05g17060) showed upregulated expression as the chili pepper leaves matured, and two Class II genes (CA05g17060 and CA12g20070) showed downregulated expression with the maturation of fruits, consistent with flavonoid accumulation trends in chili pepper as reported previously. The identified genes, sequences, phylogeny and expression information collected in this article lay the groundwork for future studies on the molecular mechanisms of chili pepper flavonoid metabolism.


Planta ◽  
2009 ◽  
Vol 229 (5) ◽  
pp. 1077-1086 ◽  
Author(s):  
Lan-Qing Ma ◽  
Yan-Wu Guo ◽  
Dong-Yao Gao ◽  
Dong-Ming Ma ◽  
You-Nian Wang ◽  
...  

Planta ◽  
2017 ◽  
Vol 247 (2) ◽  
pp. 527-541 ◽  
Author(s):  
Li Li ◽  
Misbah Aslam ◽  
Fazle Rabbi ◽  
Mark C. Vanderwel ◽  
Neil W. Ashton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document