scholarly journals Molecular mechanisms underlying curcumin-mediated microRNA regulation in carcinogenesis; Focused on gastrointestinal cancers

2021 ◽  
Vol 141 ◽  
pp. 111849
Author(s):  
Abolfazl Akbari ◽  
Meghdad Sedaghat ◽  
Javad Heshmati ◽  
Seidamir Pasha Tabaeian ◽  
Sadegh Dehghani ◽  
...  
2021 ◽  
Vol 22 (18) ◽  
pp. 9887
Author(s):  
Xiaobin Shang ◽  
Kai Oliver Böker ◽  
Shahed Taheri ◽  
Thelonius Hawellek ◽  
Wolfgang Lehmann ◽  
...  

Osteoarthritis (OA) is a chronic disease affecting the whole joint, which still lacks a disease-modifying treatment. This suggests an incomplete understanding of underlying molecular mechanisms. The Wnt/β-catenin pathway is involved in different pathophysiological processes of OA. Interestingly, both excessive stimulation and suppression of this pathway can contribute to the pathogenesis of OA. microRNAs have been shown to regulate different cellular processes in different diseases, including the metabolic activity of chondrocytes and osteocytes. To bridge these findings, here we attempt to give a conclusive overview of microRNA regulation of the Wnt/β-catenin pathway in bone and cartilage, which may provide insights to advance the development of miRNA-based therapeutics for OA treatment.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Siwang Hu ◽  
Ruochi Zhao ◽  
Yahui Liu ◽  
Junzheng Chen ◽  
Zhijian Zheng ◽  
...  

Berberine (BBR) is an isoquinoline alkaloid isolated from various types of plants, including those from the Berberidaceae, Ranunculaceae, and Papaveraceae families. It has long been used in traditional Chinese medicine for treating diarrhea and gastrointestinal disorders. The medicinal properties of BBR include antimicrobial, anti-inflammatory, antioxidative, lipid-regulatory, and antidiabetic actions. Importantly, the efficacy of BBR against cancers has been assessed in several experimental studies and clinical trials. Gastrointestinal (GI) cancers are a group of the most prevalent cancers worldwide that are associated with high morbidity and mortality, and their associated mortality has been increasing over the years. Thus, GI cancers have become a burden to the patients and health care systems. This review summarizes the cellular and molecular mechanisms underlying the therapeutic effects of BBR and explores its potential preventive and therapeutic applications against GI cancers.


2010 ◽  
Vol 295 (1) ◽  
pp. 7-16 ◽  
Author(s):  
William Ka Kei Wu ◽  
Joseph Jao Yiu Sung ◽  
Chung Wa Lee ◽  
Jun Yu ◽  
Chi Hin Cho

Medicina ◽  
2021 ◽  
Vol 57 (8) ◽  
pp. 806
Author(s):  
Liliana Maria Radulescu ◽  
Dan Radulescu ◽  
Tudor-Eliade Ciuleanu ◽  
Dana Crisan ◽  
Elena Buzdugan ◽  
...  

Cardiotoxicity is a well-recognised side effect of cancer-related therapies with a great impact on outcomes and quality of life in the cancer survivor population. The pathogenesis of chemotherapy-induced cardiotoxicity in patients with gastrointestinal cancers involves various molecular mechanisms, and the combined use of various chemotherapies augments the risk of each drug used alone. In terms of cardiotoxicity diagnosis, novel biomarkers, such as troponins, brain natriuretic peptide (BNP), myeloperoxidases and miRNAs have been recently assessed. Echocardiography is a noninvasive imaging method of choice for the primary assessment of chemotherapy-treated patients to generally evaluate the cardiovascular impact of these drugs. Novel echocardiography techniques, like three-dimensional and stress echocardiography, will improve diagnosis efficacy. Cardiac magnetic resonance (CMR) can evaluate cardiac morphology, function and wall structure. Corroborated data have shown the importance of CMR in the early evaluation of patients with gastrointestinal cancers, treated with anticancer drugs, but further studies are required to improve risk stratification in these patients. In this article, we review some important aspects concerning the cardiotoxicity of antineoplastic drugs used in gastrointestinal cancers. We also discuss the mechanism of cardiotoxicity, the role of biomarkers and the imaging methods used in its detection.


2020 ◽  
Vol 21 (9) ◽  
pp. 3212 ◽  
Author(s):  
Yash Raj Rastogi ◽  
Adesh K. Saini ◽  
Vijay Kumar Thakur ◽  
Reena V. Saini

Despite decades of exhaustive research on cancer, questions about cancer initiation, development, recurrence, and metastasis have still not been completely answered. One of the reasons is the plethora of factors acting simultaneously in a tumour microenvironment, of which not all have garnered attention. One such factor that has long remained understudied and has only recently received due attention is the host microbiota. Our sheer-sized microbiota exists in a state of symbiosis with the body and exerts significant impact on our body’s physiology, ranging from immune-system development and regulation to neurological and cognitive development. The presence of our microbiota is integral to our development, but a change in its composition (microbiota dysbiosis) can often lead to adverse effects, increasing the propensity of serious diseases like cancers. In the present review, we discuss environmental and genetic factors that cause changes in microbiota composition, disposing of the host towards cancer, and the molecular mechanisms (such as β-catenin signalling) and biochemical pathways (like the generation of oncogenic metabolites like N-nitrosamines and hydrogen sulphide) that the microbiota uses to initiate or accelerate cancers, with emphasis on gastrointestinal cancers. Moreover, we discuss how microbiota can adversely influence the success of colorectal-cancer chemotherapy, and its role in tumour metastasis. We also attempted to resolve conflicting results obtained for the butyrate effect on tumour suppression in the colon, often referred to as the ‘butyrate paradox’. In addition, we suggest the development of microbiota-based biomarkers for early cancer diagnosis, and a few target molecules of which the inhibition can increase the overall chances of cancer cure.


2021 ◽  
Vol 10 ◽  
Author(s):  
Qinghai Li ◽  
Weiling He ◽  
Guohui Wan

Cellular ribonucleic acids (RNAs), including messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs), harbor more than 150 forms of chemical modifications, among which methylation modifications are dynamically regulated and play significant roles in RNA metabolism. Recently, dysregulation of RNA methylation modifications is found to be linked to various physiological bioprocesses and many human diseases. Gastric cancer (GC) and colorectal cancer (CRC) are two main gastrointestinal-related cancers (GIC) and the most leading causes of cancer-related death worldwide. In-depth understanding of molecular mechanisms on GIC can provide important insights in developing novel treatment strategies for GICs. In this review, we focus on the multitude of epigenetic changes of RNA methlyadenosine modifications in gene expression, and their roles in GIC tumorigenesis, progression, and drug resistance, and aim to provide the potential therapeutic regimens for GICs.


2020 ◽  
Vol 41 (9) ◽  
pp. 1161-1172 ◽  
Author(s):  
Yusha Zhu ◽  
Max Costa

Abstract Many metals are essential for living organisms, but at higher doses they may be toxic and carcinogenic. Metal exposure occurs mainly in occupational settings and environmental contaminations in drinking water, air pollution and foods, which can result in serious health problems such as cancer. Arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr) and nickel (Ni) are classified as Group 1 carcinogens by the International Agency for Research on Cancer. This review provides a comprehensive summary of current concepts of the molecular mechanisms of metal-induced carcinogenesis and focusing on a variety of pathways, including genotoxicity, mutagenesis, oxidative stress, epigenetic modifications such as DNA methylation, histone post-translational modification and alteration in microRNA regulation, competition with essential metal ions and cancer-related signaling pathways. This review takes a broader perspective and aims to assist in guiding future research with respect to the prevention and therapy of metal exposure in human diseases including cancer.


Author(s):  
David P. Bazett-Jones ◽  
Mark L. Brown

A multisubunit RNA polymerase enzyme is ultimately responsible for transcription initiation and elongation of RNA, but recognition of the proper start site by the enzyme is regulated by general, temporal and gene-specific trans-factors interacting at promoter and enhancer DNA sequences. To understand the molecular mechanisms which precisely regulate the transcription initiation event, it is crucial to elucidate the structure of the transcription factor/DNA complexes involved. Electron spectroscopic imaging (ESI) provides the opportunity to visualize individual DNA molecules. Enhancement of DNA contrast with ESI is accomplished by imaging with electrons that have interacted with inner shell electrons of phosphorus in the DNA backbone. Phosphorus detection at this intermediately high level of resolution (≈lnm) permits selective imaging of the DNA, to determine whether the protein factors compact, bend or wrap the DNA. Simultaneously, mass analysis and phosphorus content can be measured quantitatively, using adjacent DNA or tobacco mosaic virus (TMV) as mass and phosphorus standards. These two parameters provide stoichiometric information relating the ratios of protein:DNA content.


Author(s):  
G-A. Keller ◽  
S. J. Gould ◽  
S. Subramani ◽  
S. Krisans

Subcellular compartments within eukaryotic cells must each be supplied with unique sets of proteins that must be directed to, and translocated across one or more membranes of the target organelles. This transport is mediated by cis- acting targeting signals present within the imported proteins. The following is a chronological account of a series of experiments designed and carried out in an effort to understand how proteins are targeted to the peroxisomal compartment.-We demonstrated by immunocryoelectron microscopy that the enzyme luciferase is a peroxisomal enzyme in the firefly lantern. -We expressed the cDNA encoding firefly luciferase in mammalian cells and demonstrated by immunofluorescence that the enzyme was transported into the peroxisomes of the transfected cells. -Using deletions, linker insertions, and gene fusion to identify regions of luciferase involved in its transport to the peroxisomes, we demonstrated that luciferase contains a peroxisomal targeting signal (PTS) within its COOH-terminal twelve amino acid.


Author(s):  
D. P. Bazett-Jones ◽  
M. J. Hendzel

Structural analysis of combinations of nucleosomes and transcription factors on promoter and enhancer elements is necessary in order to understand the molecular mechanisms responsible for the regulation of transcription initiation. Such complexes are often not amenable to study by high resolution crystallographic techniques. We have been applying electron spectroscopic imaging (ESI) to specific problems in molecular biology related to transcription regulation. There are several advantages that this technique offers in studies of nucleoprotein complexes. First, an intermediate level of spatial resolution can be achieved because heavy atom contrast agents are not necessary. Second, mass and stoichiometric relationships of protein and nucleic acid can be estimated by phosphorus detection, an element in much higher proportions in nucleic acid than protein. Third, wrapping or bending of the DNA by the protein constituents can be observed by phosphorus mapping of the complexes. Even when ESI is used with high exposure of electrons to the specimen, important macromolecular information may be provided. For example, an image of the TATA binding protein (TBP) bound to DNA is shown in the Figure (top panel). It can be seen that the protein distorts the DNA away from itself and much of its mass sits off the DNA helix axis. Moreover, phosphorus and mass estimates demonstrate whether one or two TBP molecules interact with this particular promoter TATA sequence.


Sign in / Sign up

Export Citation Format

Share Document