scholarly journals Melatonin pre-treated bone marrow derived-mesenchymal stem cells prompt wound healing in rat models

2022 ◽  
Vol 145 ◽  
pp. 112473
Author(s):  
Aljohra M. Al-Otaibi ◽  
Asma S. Al-Gebaly ◽  
Rafa Almeer ◽  
Gadah Albasher ◽  
Wedad S. Al-Qahtani ◽  
...  
PLoS ONE ◽  
2015 ◽  
Vol 10 (12) ◽  
pp. e0145565 ◽  
Author(s):  
Lei Chen ◽  
Yingbin Xu ◽  
Jingling Zhao ◽  
Zhaoqiang Zhang ◽  
Ronghua Yang ◽  
...  

2020 ◽  
Vol 41 (5) ◽  
pp. 1069-1078
Author(s):  
Parisa Ramhormozi ◽  
Javad Mohajer Ansari ◽  
Sara Simorgh ◽  
Maliheh Nobakht

Abstract Burn wound healing is one of the most important problems in the field of medical science. Promising results have recently been reported by researchers who used bone marrow mesenchymal stem cells (BMSCs) to treat burn wounds. In this study, we investigated the effects of BMSC therapy in combination with simvastatin (SMV) on angiogenesis as well as on the activity of the Akt/mTOR signaling pathway during burn wound healing in rats. After creating second-degree burn wounds, 40 adult male Wistar rats were randomly divided into four treatment groups: the control, SMV, BMSCs, and the combination therapy group (BMSCs+SMV). Animals were killed 14 days after treatment initiation, and the wounds were removed for histological and molecular analyses. All in all, combination therapy produced better outcomes than individual therapy in terms of the wound closure area, epidermal regeneration level, collagen deposition intensity, and reepithelialization rate. In addition, the elevations of expression levels of Akt and mTOR genes, at both mRNA and protein levels, were more pronounced in the BMSCs+SMV group (P < .05, at least, for both qRT-PCR and western blot assessments). qRT-PCR findings also demonstrated that the wounds treated with the combination of BMSCs and SMV had the highest expression levels of CD31 and VEGF genes (P < .01 for all comparisons). These data suggest that the combined administration of BMSCs transplantation and topical SMV has a great potential in burn wound healing. According to the findings, the beneficial effects of the combination therapy are caused, at least in part, through stimulating Akt/mTOR signaling pathway.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ling Guo ◽  
Juan Du ◽  
Dan-feng Yuan ◽  
Ya Zhang ◽  
Shu Zhang ◽  
...  

Abstract Background The transplantation of bone marrow mesenchymal stem cells (BMSCs) is a promising therapeutic strategy for wound healing. However, the poor migration capacity and low survival rate of transplanted BMSCs in wounds weaken their potential application. Objective To identify the optimal protocol for BMSCs preconditioned with H2O2 and improve the therapeutic efficacy using H2O2-preconditioned BMSCs in wound healing. Methods Mouse BMSCs were exposed to various concentrations of H2O2, and the key cellular functional properties were assessed to determine the optimal precondition with H2O2. The H2O2-preconditioned BMSCs were transplanted into mice with full-thickness excisional wounds to evaluate their healing capacity and tissue engraftment. Results Treatment BMSCs with 50 μM H2O2 for 12 h could significantly enhance their proliferation, migration, and survival by maximizing the upregulation of cyclin D1, SDF-1, and its receptors CXCR4/7 expressions, and activating the PI3K/Akt/mTOR pathway, but inhibiting the expression of p16 and GSK-3β. Meanwhile, oxidative stress-induced BMSC apoptosis was also significantly attenuated by the same protocol pretreatment with a decreased ratio of Bax/Bcl-2 and cleaved caspase-9/3 expression. Moreover, after the identification of the optimal protocol of H2O2 precondition in vitro, the migration and tissue engraftment of transfused BMSCs with H2O2 preconditioning were dramatically increased into the wound site as compared to the un-preconditioned BMSCs. The increased microvessel density and the speedy closure of the wounds were observed after the transfusion of H2O2-preconditioned BMSCs. Conclusions The findings suggested that 50 μM H2O2 pretreated for 12 h is the optimal precondition for the transplantation of BMSCs, which gives a considerable insight that this protocol may be served as a promising candidate for improving the therapeutic potential of BMSCs for wound healing.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Luis Rodriguez-Menocal ◽  
Shahjahan Shareef ◽  
Marcela Salgado ◽  
Arsalan Shabbir ◽  
Evangelos Van Badiavas

2006 ◽  
Vol 14 (3) ◽  
pp. 325-335 ◽  
Author(s):  
Xiaobing Fu ◽  
Lijun Fang ◽  
Xiaokun Li ◽  
Biao Cheng ◽  
Zhiyong Sheng

Sign in / Sign up

Export Citation Format

Share Document