scholarly journals Neuroprotective effect of YIAEDAER peptide against Parkinson’s disease like pathology in zebrafish

2022 ◽  
Vol 147 ◽  
pp. 112629
Qingyu Ren ◽  
Xin Jiang ◽  
Shanshan Zhang ◽  
Xin Gao ◽  
Yam Nath Paudel ◽  
2020 ◽  
Vol 152 ◽  
pp. 104593 ◽  
Yam Nath Paudel ◽  
Efthalia Angelopoulou ◽  
Christina Piperi ◽  
Mohd. Farooq Shaikh ◽  
Iekhsan Othman

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Renrong Wei ◽  
Cuiping Rong ◽  
Qingfeng Xie ◽  
Shouhai Wu ◽  
Yuchao Feng ◽  

Parkinson’s disease (PD) is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra (SN)-striatum circuit, which is associated with glial activation and consequent chronic neuroinflammation. Optimized Yinxieling Formula (OYF) is a Chinese medicine that exerts therapeutical effect and antiinflammation property on psoriasis. Our previous study has proven that pretreatment with OYF could regulate glia-mediated inflammation in an acute mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Given that PD is a chronic degeneration disorder, this study applied another PD animal model induced by striatal injection of 6-hydroxydopamine (6-OHDA) to mimic the progressive damage of the SN-striatum dopamine system in rats. The OYF was administrated in the manner of pretreatment plus treatment. The effects of the OYF on motor behaviors were assessed with the apomorphine-induced rotation test and adjusting steps test. To confirm the effect of OYF on dopaminergic neurons and glia activation in this model, we analyzed the expression of tyrosine hydroxylase (TH) and glia markers, ionized calcium-binding adapter molecule 1 (Iba-1), and glial fibrillary acidic protein (GFAP) in the SN region of the rat PD model. Inflammation-associated factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were further evaluated in this model and in interferon-γ- (INF-γ-) induced murine macrophages RAW264.7 cells. The results from the in vivo study showed that OYF reversed the motor behavioral dysfunction in 6-OHDA-induced PD rats, upregulated the TH expression, decreased the immunoreactivity of Iba-1 and GFAP, and downregulated the mRNA levels of TNF-α and COX-2. The OYF also trended to decrease the mRNA levels of IL-1β and iNOS in vivo. The results from the in vitro study showed that OYF significantly decreased the mRNA levels of TNF-α, IL-1β, IL-6, iNOS, and COX-2. Therefore, this study suggests that OYF exerts antiinflammatory effects, which might be related to the protection of dopaminergic neurons in 6-OHDA-induced chronic neurotoxicity.

2018 ◽  
Vol 233 (8) ◽  
pp. 5981-6000 ◽  
Rania M. Salama ◽  
Mariane G. Tadros ◽  
Mona F. Schaalan ◽  
Nevine Bahaa ◽  
Ahmed M. Abdel-tawab ◽  

2021 ◽  
Vol 85 ◽  
pp. 104635
Lei Wang ◽  
Shengyu Li ◽  
Yu Jiang ◽  
Zijian Zhao ◽  
Yunjiao Shen ◽  

2021 ◽  
Dhruv Mahendru ◽  
Ashish Jain ◽  
Seema Bansal ◽  
Deepti Malik ◽  
Neha Dhir ◽  

Aim: The aim of the study was to evaluate the neuroprotective effect of bone marrow stem cell secretome in the 6-hydroxydopamine (6-OHDA) model of Parkinson's disease. Materials & methods: Secretome prepared from mesenchymal stem cells of 3-month-old rats was injected daily for 7 days between days 7 and 14 after 6-OHDA administration. After 14 days, various neurobehavioral parameters were conducted. These behavioral parameters were further correlated with biochemical and molecular findings. Results & conclusion: Impaired neurobehavioral parameters and increased inflammatory, oxidative stress and apoptotic markers in the 6-OHDA group were significantly modulated by secretome-treated rats. In conclusion, mesenchymal stem cells-derived secretome could be further explored for the management of Parkinson's disease.

Sign in / Sign up

Export Citation Format

Share Document