De-novo designed β-lysine derivatives can both augment and diminish the proliferation rates of E. coli through the action of Elongation Factor P

Author(s):  
Ciara M. McDonnell ◽  
Magda Ghanim ◽  
J. Mike Southern ◽  
Vincent P. Kelly ◽  
Stephen J. Connon
mBio ◽  
2015 ◽  
Vol 6 (3) ◽  
Author(s):  
Andrei Rajkovic ◽  
Sarah Erickson ◽  
Anne Witzky ◽  
Owen E. Branson ◽  
Jin Seo ◽  
...  

ABSTRACT Elongation factor P (EF-P) is a ubiquitous bacterial protein that is required for the synthesis of poly-proline motifs during translation. In Escherichia coli and Salmonella enterica, the posttranslational β-lysylation of Lys34 by the PoxA protein is critical for EF-P activity. PoxA is absent from many bacterial species such as Pseudomonas aeruginosa, prompting a search for alternative EF-P posttranslation modification pathways. Structural analyses of P. aeruginosa EF-P revealed the attachment of a single cyclic rhamnose moiety to an Arg residue at a position equivalent to that at which β-Lys is attached to E. coli EF-P. Analysis of the genomes of organisms that both lack poxA and encode an Arg32-containing EF-P revealed a highly conserved glycosyltransferase (EarP) encoded at a position adjacent to efp. EF-P proteins isolated from P. aeruginosa ΔearP, or from a ΔrmlC::acc1 strain deficient in dTDP-l-rhamnose biosynthesis, were unmodified. In vitro assays confirmed the ability of EarP to use dTDP-l-rhamnose as a substrate for the posttranslational glycosylation of EF-P. The role of rhamnosylated EF-P in translational control was investigated in P. aeruginosa using a Pro4-green fluorescent protein (Pro4GFP) in vivo reporter assay, and the fluorescence was significantly reduced in Δefp, ΔearP, and ΔrmlC::acc1 strains. ΔrmlC::acc1, ΔearP, and Δefp strains also displayed significant increases in their sensitivities to a range of antibiotics, including ertapenem, polymyxin B, cefotaxim, and piperacillin. Taken together, our findings indicate that posttranslational rhamnosylation of EF-P plays a key role in P. aeruginosa gene expression and survival. IMPORTANCE Infections with pathogenic Salmonella, E. coli, and Pseudomonas isolates can all lead to infectious disease with potentially fatal sequelae. EF-P proteins contribute to the pathogenicity of the causative agents of these and other diseases by controlling the translation of proteins critical for modulating antibiotic resistance, motility, and other traits that play key roles in establishing virulence. In Salmonella spp. and E. coli, the attachment of β-Lys is required for EF-P activity, but the proteins required for this posttranslational modification pathway are absent from many organisms. Instead, bacteria such as P. aeruginosa activate EF-P by posttranslational modification with rhamnose, revealing a new role for protein glycosylation that may also prove useful as a target for the development of novel antibiotics.


2021 ◽  
Vol 22 (13) ◽  
pp. 6973
Author(s):  
Alberto Mills ◽  
Federico Gago

eEF1A1 and eEF1A2 are paralogous proteins whose presence in most normal eukaryotic cells is mutually exclusive and developmentally regulated. Often described in the scientific literature under the collective name eEF1A, which stands for eukaryotic elongation factor 1A, their best known activity (in a monomeric, GTP-bound conformation) is to bind aminoacyl-tRNAs and deliver them to the A-site of the 80S ribosome. However, both eEF1A1 and eEF1A2 are endowed with multitasking abilities (sometimes performed by homo- and heterodimers) and can be located in different subcellular compartments, from the plasma membrane to the nucleus. Given the high sequence identity of these two sister proteins and the large number of post-translational modifications they can undergo, we are often confronted with the dilemma of discerning which is the particular proteoform that is actually responsible for the ascribed biochemical or cellular effects. We argue in this review that acquiring this knowledge is essential to help clarify, in molecular and structural terms, the mechanistic involvement of these two ancestral and abundant G proteins in a variety of fundamental cellular processes other than translation elongation. Of particular importance for this special issue is the fact that several de novo heterozygous missense mutations in the human EEF1A2 gene are associated with a subset of rare but severe neurological syndromes and cardiomyopathies.


2012 ◽  
Vol 78 (20) ◽  
pp. 7407-7413 ◽  
Author(s):  
Qian Zhang ◽  
Tao Yan

ABSTRACTNaturalized soilEscherichia colipopulations need to resist common soil desiccation stress in order to inhabit soil environments. In this study, four representative soilE. colistrains and one lab strain, MG1655, were tested for desiccation resistance via die-off experiments in sterile quartz sand under a potassium acetate-induced desiccation condition. The desiccation stress caused significantly lower die-off rates of the four soil strains (0.17 to 0.40 day−1) than that of MG1655 (0.85 day−1). Cellular responses, including extracellular polymeric substance (EPS) production, exogenous glycine betaine (GB) uptake, and intracellular compatible organic solute synthesis, were quantified and compared under the desiccation and hydrated control conditions. GB uptake appeared not to be a specific desiccation response, while EPS production showed considerable variability among theE. colistrains. AllE. colistrains produced more intracellular trehalose, proline, and glutamine under the desiccation condition than the hydrated control, and only the trehalose concentration exhibited a significant correlation with the desiccation-contributed die-off coefficients (Spearman's ρ = −1.0;P= 0.02).De novotrehalose synthesis was further determined for 15E. colistrains from both soil and nonsoil sources to determine its prevalence as a specific desiccation response. MostE. colistrains (14/15) synthesized significantly more trehalose under the desiccation condition, and the soilE. colistrains produced more trehalose (106.5 ± 44.9 μmol/mg of protein [mean ± standard deviation]) than the nonsoil reference strains (32.5 ± 10.5 μmol/mg of protein).


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhenning Liu ◽  
Xue Zhang ◽  
Dengwei Lei ◽  
Bin Qiao ◽  
Guang-Rong Zhao

Abstract Background 3-Phenylpropanol with a pleasant odor is widely used in foods, beverages and cosmetics as a fragrance ingredient. It also acts as the precursor and reactant in pharmaceutical and chemical industries. Currently, petroleum-based manufacturing processes of 3-phenypropanol is environmentally unfriendly and unsustainable. In this study, we aim to engineer Escherichia coli as microbial cell factory for de novo production of 3-phenypropanol via retrobiosynthesis approach. Results Aided by in silico retrobiosynthesis analysis, we designed a novel 3-phenylpropanol biosynthetic pathway extending from l-phenylalanine and comprising the phenylalanine ammonia lyase (PAL), enoate reductase (ER), aryl carboxylic acid reductase (CAR) and phosphopantetheinyl transferase (PPTase). We screened the enzymes from plants and microorganisms and reconstructed the artificial pathway for conversion of 3-phenylpropanol from l-phenylalanine. Then we conducted chromosome engineering to increase the supply of precursor l-phenylalanine and combined the upstream l-phenylalanine pathway and downstream 3-phenylpropanol pathway. Finally, we regulated the metabolic pathway strength and optimized fermentation conditions. As a consequence, metabolically engineered E. coli strain produced 847.97 mg/L of 3-phenypropanol at 24 h using glucose-glycerol mixture as co-carbon source. Conclusions We successfully developed an artificial 3-phenylpropanol pathway based on retrobiosynthesis approach, and highest titer of 3-phenylpropanol was achieved in E. coli via systems metabolic engineering strategies including enzyme sources variety, chromosome engineering, metabolic strength balancing and fermentation optimization. This work provides an engineered strain with industrial potential for production of 3-phenylpropanol, and the strategies applied here could be practical for bioengineers to design and reconstruct the microbial cell factory for high valuable chemicals.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Maria A Sacta ◽  
Bowranigan Tharmalingam ◽  
Maddalena Coppo ◽  
David A Rollins ◽  
Dinesh K Deochand ◽  
...  

The glucocorticoid receptor (GR) potently represses macrophage-elicited inflammation, however, the underlying mechanisms remain obscure. Our genome-wide analysis in mouse macrophages reveals that pro-inflammatory paused genes, activated via global negative elongation factor (NELF) dissociation and RNA Polymerase (Pol)2 release from early elongation arrest, and non-paused genes, induced by de novo Pol2 recruitment, are equally susceptible to acute glucocorticoid repression. Moreover, in both cases the dominant mechanism involves rapid GR tethering to p65 at NF-kB-binding sites. Yet, specifically at paused genes, GR activation triggers widespread promoter accumulation of NELF, with myeloid cell-specific NELF deletion conferring glucocorticoid resistance. Conversely, at non-paused genes, GR attenuates the recruitment of p300 and histone acetylation, leading to a failure to assemble BRD4 and Mediator at promoters and enhancers, ultimately blocking Pol2 initiation. Thus, GR displays no preference for a specific pro-inflammatory gene class; however, it effects repression by targeting distinct temporal events and components of transcriptional machinery.


Cell Reports ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. 476-483 ◽  
Author(s):  
Agata L. Starosta ◽  
Jürgen Lassak ◽  
Lauri Peil ◽  
Gemma C. Atkinson ◽  
Christopher J. Woolstenhulme ◽  
...  

1998 ◽  
Vol 180 (7) ◽  
pp. 1814-1821 ◽  
Author(s):  
Yong Yang ◽  
Ho-Ching Tiffany Tsui ◽  
Tsz-Kwong Man ◽  
Malcolm E. Winkler

ABSTRACT pdxK encodes a pyridoxine (PN)/pyridoxal (PL)/pyridoxamine (PM) kinase thought to function in the salvage pathway of pyridoxal 5′-phosphate (PLP) coenzyme biosynthesis. The observation that pdxK null mutants still contain PL kinase activity led to the hypothesis that Escherichia coli K-12 contains at least one other B6-vitamer kinase. Here we support this hypothesis by identifying the pdxY gene (formally, open reading frame f287b) at 36.92 min, which encodes a novel PL kinase. PdxY was first identified by its homology to PdxK in searches of the complete E. coli genome. Minimal clones of pdxY + overexpressed PL kinase specific activity about 10-fold. We inserted an omega cassette intopdxY and crossed the resultingpdxY::ΩKanr mutation into the bacterial chromosome of a pdxB mutant, in which de novo PLP biosynthesis is blocked. We then determined the growth characteristics and PL and PN kinase specific activities in extracts ofpdxK and pdxY single and double mutants. Significantly, the requirement of the pdxB pdxK pdxY triple mutant for PLP was not satisfied by PL and PN, and the triple mutant had negligible PL and PN kinase specific activities. Our combined results suggest that the PL kinase PdxY and the PN/PL/PM kinase PdxK are the only physiologically important B6vitamer kinases in E. coli and that their function is confined to the PLP salvage pathway. Last, we show thatpdxY is located downstream from pdxH (encoding PNP/PMP oxidase) and essential tyrS (encoding aminoacyl-tRNATyr synthetase) in a multifunctional operon.pdxY is completely cotranscribed with tyrS, but about 92% of tyrS transcripts terminate at a putative Rho-factor-dependent attenuator located in thetyrS-pdxY intercistronic region.


2021 ◽  
Author(s):  
◽  
Madeleine Huber

Operons wurden zuerst im Jahre 1961 beschrieben. Bis heute ist bekannt, dass die prokaryotischen Domänen Bacteria und Archaea Gene sowohl in monocistronischen als auch in bi- oder polycistronischen Transkripten exprimieren können. Häufig überlappen Gene sogar in ihren Sequenzen. Diese überlappenden Genpaare stehen nicht in Korrelation mit der Kompaktheit ihres Genoms. Das führt zu der Annahme, dass eine Art der Regulation vorliegt, welche weitere Proteine oder Gene nicht benötigt. Diese könnte eine gekoppelte Translation sein. Das bedeutet die Translation des stromabwärts-liegenden Gens ist abhängig von der Translation eines stromaufwärts-liegenden Gens. Diese Abhängigkeit kann zum Beispiel durch lang reichende Sekundärstrukturen entstehen, bei welchen Ribosomenbindestellen (RBS) des stromabwärts-liegenden Gens blockiert sind. Die de novo-Initiation am stromabwärts-liegenden Gen kann nur stattfinden, wenn das erste Gen translatiert wird und dabei die Sekundärstruktur an der RBS aufgeschmolzen wird. Für Genpaare in E. coli ist dieser Mechanismus gut untersucht. Ein anderes Beispiel für die Translationskopplung ist die Termination-Reinitiation, bei welcher ein Ribosom das erste Gen translatiert bis zum Stop-Codon, dort terminiert und direkt am stromabwärts-liegenden Start-Codon reinitiiert. Der Mechanismus via Termination-Reinitiation ist bis jetzt nur für eukaryontische Viren beschrieben worden. Im Gegensatz zu einer Kopplung über Sekundärstrukturen kommt es bei der Termination-Reinitiation am stromabwärts-liegenden Gen nicht zu einer de novo-Initiation sondern eine Reinitiation des Ribosoms findet statt. Diese Arbeit analysiert jene Art der Translationskopplung an Genen polycistronischer mRNAs in jeweils einem Modellorganismus als Vertreter der Archaea (Haloferax volcanii) und Bacteria (Escherichia coli). Hierfür wurden Reportergenvektoren erstellt, welche die überlappenden Genpaare an Reportergene fusionierten. Für diese Reportergene ist es möglich die Transkriptmenge zu quantifizieren sowie für die exprimierten Proteine Enzymassays durchgeführt werden können. Aus beiden Werten können Translationseffizienzen berechnet werden indem jeweils die Enzymaktivität pro Transkriptmenge ermittelt wird. Durch ein prämatures Stop-Codon in diesen Konstrukten ist es möglich zu unterscheiden ob es für die Translation des zweiten Gens essentiell ist, dass das Ribosom den Überlapp erreicht. Hiermit konnte für neun Genpaare in H. volcanii und vier Genpaare in E. coli gezeigt werden, dass eine Art der Kopplung stattfindet bei der es sich um eine Termination-Reinitiation handelt. Des Weiteren wurde analysiert, welche Auswirkungen intragene Shine-Dalgarno Sequenzen bei dem Event der Translationskopplung besitzen. Durch die Mutation solcher Motive und dem Vergleich der Translationseffizienzen der Konstrukte, mit und ohne einer SD Sequenz, wird für alle analysierten Genpaare beider Modellorganismen gezeigt, dass die SD Sequenz einen Einfluss auf diese Art der Kopplung hat. Zwischen den Genpaaren ist dieser Einfluss jedoch stark variabel. Weiterhin wurde der maximale Abstand zwischen zwei bicistronischen Genen untersucht, für welchen Translationskopplung via Termination-Reinitiation noch stattfinden kann. Hierfür wird durch site-directed mutagenesis jeweils ein prämatures Stop-Codon im stromaufwärts-liegenden Gen eingebracht, welches den intergenen Abstand zwischen den Genen in den jeweiligen Konstrukten vergrößert. Der Vergleich aller Konstrukte eines Genpaars zeigt in beiden Modellorganismen, dass die Termination-Reinitiation vom intergenen Abstand abhängig ist und die Translationseffizienz des stromabwärts-liegenden Reporters bereits ab 15 Nukleotiden Abstand abnimmt. Eine weitere Fragestellung dieser Arbeit war es, den genauen Mechanismus der Termination-Reinitiation zu analysieren. Für Ribosomen gibt es an der mRNA nach der Termination der Translation zwei Möglichkeiten: Entweder als 70S Ribosom bestehen zu bleiben und ein weiteres Start-Codon auf der mRNA zu suchen oder in seine beiden Untereinheiten zu dissoziieren, während die 50S Untereinheit die mRNA verlässt und die 30S Untereinheit über Wechselwirkungen an der mRNA verbleiben kann. Um diesen Mechanismus auf molekularer Ebene zu untersuchen, wird ein Versuchsablauf vorgestellt. Dieser ermöglicht das Event bei der Termination-Reinitiation in vitro zu analysieren. Eine Unterscheidung von 30S oder 70S Ribosomen bei der Reinitiation der Translation des stromabwärts-liegenden Gens wird ermöglicht. Die Idee dabei basiert auf einem ribosome display, bei welchem Translationskomplexe am Ende der Translation nicht in ihre Bestandteile zerfallen können, da die eingesetzte mRNA kein Stop-Codon enthält Der genaue Versuchsablauf, die benötigten Bestandteile sowie proof-of-principal Versuche sind in der Arbeit dargestellt und mögliche Optimierungen werden diskutiert.


Sign in / Sign up

Export Citation Format

Share Document