Novel architecture with selected feature vector for effective classification of mitotic and non-mitotic cells in breast cancer histology images

2022 ◽  
Vol 71 ◽  
pp. 103212
Author(s):  
Mobeen Ur Rehman ◽  
Suhail Akhtar ◽  
Muhammad Zakwan ◽  
Muhammad Habib Mahmood
2014 ◽  
Vol 4 (2) ◽  
pp. 149-162 ◽  
Author(s):  
Tomasz Bruździński ◽  
Adam Krzyżak ◽  
Thomas Fevens ◽  
Łukasz Jeleń

Abstract The aim of this work is to create a web-based system that will assist its users in the cancer diagnosis process by means of automatic classification of cytological images obtained during fine needle aspiration biopsy. This paper contains a description of the study on the quality of the various algorithms used for the segmentation and classification of breast cancer malignancy. The object of the study is to classify the degree of malignancy of breast cancer cases from fine needle aspiration biopsy images into one of the two classes of malignancy, high or intermediate. For that purpose we have compared 3 segmentation methods: k-means, fuzzy c-means and watershed, and based on these segmentations we have constructed a 25–element feature vector. The feature vector was introduced as an input to 8 classifiers and their accuracy was checked. The results show that the highest classification accuracy of 89.02 % was recorded for the multilayer perceptron. Fuzzy c–means proved to be the most accurate segmentation algorithm, but at the same time it is the most computationally intensive among the three studied segmentation methods.


2015 ◽  
Vol 13 (999) ◽  
pp. 1-1
Author(s):  
Francisco J. Prado-Prado ◽  
Angel G. Arguello-Chan ◽  
Coraima I. Estrada-Domínguez ◽  
Alejandra Aguirre-Crespo ◽  
Francisco J. Aguirre-Crespo ◽  
...  

Author(s):  
Saliha Zahoor ◽  
Ikram Ullah Lali ◽  
Muhammad Attique Khan ◽  
Kashif Javed ◽  
Waqar Mehmood

: Breast Cancer is a common dangerous disease for women. In the world, many women died due to Breast cancer. However, in the initial stage, the diagnosis of breast cancer can save women's life. To diagnose cancer in the breast tissues there are several techniques and methods. The image processing, machine learning and deep learning methods and techniques are presented in this paper to diagnose the breast cancer. This work will be helpful to adopt better choices and reliable methods to diagnose breast cancer in an initial stage to survive the women's life. To detect the breast masses, microcalcifications, malignant cells the different techniques are used in the Computer-Aided Diagnosis (CAD) systems phases like preprocessing, segmentation, feature extraction, and classification. We have been reported a detailed analysis of different techniques or methods with their usage and performance measurement. From the reported results, it is concluded that for the survival of women’s life it is essential to improve the methods or techniques to diagnose breast cancer at an initial stage by improving the results of the Computer-Aided Diagnosis systems. Furthermore, segmentation and classification phases are challenging for researchers for the diagnosis of breast cancer accurately. Therefore, more advanced tools and techniques are still essential for the accurate diagnosis and classification of breast cancer.


2020 ◽  
Vol 14 ◽  
Author(s):  
Lahari Tipirneni ◽  
Rizwan Patan

Abstract:: Millions of deaths all over the world are caused by breast cancer every year. It has become the most common type of cancer in women. Early detection will help in better prognosis and increases the chance of survival. Automating the classification using Computer-Aided Diagnosis (CAD) systems can make the diagnosis less prone to errors. Multi class classification and Binary classification of breast cancer is a challenging problem. Convolutional neural network architectures extract specific feature descriptors from images, which cannot represent different types of breast cancer. This leads to false positives in classification, which is undesirable in disease diagnosis. The current paper presents an ensemble Convolutional neural network for multi class classification and Binary classification of breast cancer. The feature descriptors from each network are combined to produce the final classification. In this paper, histopathological images are taken from publicly available BreakHis dataset and classified between 8 classes. The proposed ensemble model can perform better when compared to the methods proposed in the literature. The results showed that the proposed model could be a viable approach for breast cancer classification.


1994 ◽  
Vol 1 (2) ◽  
pp. 49-55 ◽  
Author(s):  
I Számel ◽  
B Budai ◽  
K Daubner ◽  
J Kralovánszky ◽  
Sz Ottó ◽  
...  

ABSTRACT Gross cystic disease (GCD) of the breast may be associated with a higher risk for the development of breast cancer. High levels of sex steroids, steroid hormone precursors, prolactin and cations have been found in breast cyst fluid (BCF) by several investigators. Accordingly, endocrine parameters and the cationic composition of BCF may be considered as useful characteristics to follow patients bearing macrocysts. In this study we have investigated the concentrations of estradiol (E2), progesterone, testosterone, dehydroepiandrosterone (DHA) and DHA-3-sulfate (DHA-S), prolactin, potassium (K+) and sodium (Na+) in BCF aspirated from 99 women. The mean age of the patients was 49.8 years (range 32-58). The hormone levels were measured by RIA methods; K+ and Na+ were determined by flame photometry. Estradiol, progesterone, testosterone, DHA, DHA-S, prolactin and K+ showed significant accumulation in the BCF compared with their respective serum values. The K+/Na+ ratio proved to be useful in dividing cysts into type I (≥1), type II (<1 but ≥0.1) and type III (<0.1) subgroups. For type I BCF, higher DHA, DHA-S and prolactin concentrations were detected. Linear regression analysis established a highly significant (P<0.001) correlation between the concentrations of E2 and DHA-S (r=0.686), and also between testosterone and DHA-S (r=0.711). These findings indicate that type I BCF might be a marker for 'active' GCD of the breast, and suggest that it may be associated with an increased breast cancer risk, since this group of patients is supposed to have cysts with apocrine metaplasia. It is suggested therefore that when BCF is aspirated, sex steroids, steroid precursors and cations should be routinely measured, and women with type I cysts should be regularly examined.


Author(s):  
R. PANCHAL ◽  
B. VERMA

Early detection of breast abnormalities remains the primary prevention against breast cancer despite the advances in breast cancer diagnosis and treatment. Presence of mass in breast tissues is highly indicative of breast cancer. The research work presented in this paper investigates the significance of different types of features using proposed neural network based classification technique to classify mass type of breast abnormalities in digital mammograms into malignant and benign. 14 gray level based features, four BI-RADS features, patient age feature and subtlety value feature have been explored using the proposed research methodology to attain maximum classification on test dataset. The proposed research technique attained a 91% testing classification rate with a 100% training classification rate on digital mammograms taken from the DDSM benchmark database.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Antonio Marra ◽  
Dario Trapani ◽  
Giulia Viale ◽  
Carmen Criscitiello ◽  
Giuseppe Curigliano

Abstract Triple-negative breast cancer (TNBC) is not a unique disease, encompassing multiple entities with marked histopathological, transcriptomic and genomic heterogeneity. Despite several efforts, transcriptomic and genomic classifications have remained merely theoretic and most of the patients are being treated with chemotherapy. Driver alterations in potentially targetable genes, including PIK3CA and AKT, have been identified across TNBC subtypes, prompting the implementation of biomarker-driven therapeutic approaches. However, biomarker-based treatments as well as immune checkpoint inhibitor-based immunotherapy have provided contrasting and limited results so far. Accordingly, a better characterization of the genomic and immune contexture underpinning TNBC, as well as the translation of the lessons learnt in the metastatic disease to the early setting would improve patients’ outcomes. The application of multi-omics technologies, biocomputational algorithms, assays for minimal residual disease monitoring and novel clinical trial designs are strongly warranted to pave the way toward personalized anticancer treatment for patients with TNBC.


Sign in / Sign up

Export Citation Format

Share Document