Joint DR-DME classification using deep learning-CNN based modified grey-wolf optimizer with variable weights

2022 ◽  
Vol 73 ◽  
pp. 103439
Author(s):  
V. Purna Chandra Reddy ◽  
Kiran Kumar Gurrala
2021 ◽  
Vol 11 (10) ◽  
pp. 2519-2528
Author(s):  
J. Senthil Kumar ◽  
S. Appavu Alias Balamurugan ◽  
S. Sasikala

In 2018, an invariant numbers ranging from 10 million people suffered from Tuberculosis (TB) approximately that has remained quite stable in recent years, based on the WHO 2019 survey report. This infection rate differs invariable among countries, from less than 5 to more than 500 new infections per 1,00,000 people each year, with a global average of around 130. Around 1.2 million HIV negative deaths existed in 2018. If this prevailing disease were diagnosed earlier, the death rate would have been under control, however sophisticated testing techniques tend to be cost prohibitive of wider acceptance. Some of the most important methods for TB diagnosis include thoracic X-ray image interpretation through image processing by the identification of various structures on thoracic X-rays and anomaly assessment is an important stage in computer-aided diagnosis systems. Chest form and size may contain indications for serious disorders such as pneumothorax, pneumoconiosis, tuberculosis and emphysema. Substantial work might have contributed to simplify diagnosis through implementing various statistical strategies to medical images, minimizing overtime and dramatically lowering overhead costs. In addition, recent advances in deep learning have provided magnificent results in the detection of images in different fields, but their use in diagnose TB remains limited. Thus, this work focuses on the development of a novel approach in disease detection. The concepts presented in this work are placed into practice and linked to current literature. We also proposed an automatic approach in conventional poster anterior chest X-rays for TB identification and diagnosis. We use the chest X-ray image with modified discrete grey wolf optimizer for segmentation techniques to eradicate abnormal areas and shape abnormality. We extract various features from the X-ray image with a shear let extraction that allows the image to be classified as normal or abnormal, based on a deep learning classifier, via the improved residual VGG net CNN with big data. Using Shenzhen Hospital Chest X-ray data set we test the efficiency of our system. The suggested technique has competitive results with comparatively shorter training period and greater precision depending on Masientropy based discrete gray wolf optimizer segmentation with an improved residual VGG net CNN. All the simulations are carried out in a mat lab environment.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1581
Author(s):  
Wenqiang Zhu ◽  
Jiang Guo ◽  
Guo Zhao ◽  
Bing Zeng

The hybrid renewable energy system is a promising and significant technology for clean and sustainable island power supply. Among the abundant ocean energy sources, tidal current energy appears to be very valuable due to its excellent predictability and stability, particularly compared with the intermittent wind and solar energy. In this paper, an island hybrid energy microgrid composed of photovoltaic, wind, tidal current, battery and diesel is constructed according to the actual energy sources. A sizing optimization method based on improved multi-objective grey wolf optimizer (IMOGWO) is presented to optimize the hybrid energy system. The proposed method is applied to determine the optimal system size, which is a multi-objective problem including the minimization of annualized cost of system (CACS) and deficiency of power supply probability (DPSP). MATLAB software is utilized to program and simulate the hybrid energy system. Optimization results confirm that IMOGWO is feasible to optimally size the system, and the energy management strategy effectively matches the requirements of system operation. Furthermore, comparison of hybrid systems with and without tidal current turbines is undertaken to confirm that the utilization of tidal current turbines can contribute to enhancing system reliability and reducing system investment, especially in areas with abundant tidal energy sources.


Fuel ◽  
2020 ◽  
Vol 273 ◽  
pp. 117784 ◽  
Author(s):  
Erol Ileri ◽  
Aslan Deniz Karaoglan ◽  
Sener Akpinar

2020 ◽  
pp. 107061
Author(s):  
Xinming Zhang ◽  
Qiuying Lin ◽  
Wentao Mao ◽  
Shangwang Liu ◽  
Zhi Dou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document