Optimal moisture buffering thickness of the hygroscopic material layer: Modeling and derivation

2021 ◽  
pp. 108257
Author(s):  
Hang Wan ◽  
Gongsheng Huang ◽  
Sheng Liu ◽  
Shiguang Fan ◽  
Xinhua Xu ◽  
...  
2019 ◽  
Vol 160 ◽  
pp. 106173 ◽  
Author(s):  
Hang Wan ◽  
Zhongwei Sun ◽  
Gongsheng Huang ◽  
Xinhua Xu ◽  
Jinghua Yu

2020 ◽  
pp. 1420326X2097583
Author(s):  
Ming Yang ◽  
Fanhong Kong ◽  
Xuancheng He

Hygroscopic material can moderate the indoor humidity variation due to its moisture buffering effect. This effect would change when used as interior finish mainly due to air exchange and wall moisture transfer. The author focused on clarifying the extent of the wall'’s influence on indoor moisture buffering and building humidity environment. A room model was established and the situation of no wall moisture transfer was simulated by adding a vapour barrier between the interior finish and the wall. Comparing this result with wall moisture transfer, the moisture buffering effect of the wall can be quantitatively analysed. The results verify that the buffering effect and the humidity environment, especially the seasonal buffering, change with the wall moisture transfer. The wall has great impacts on buffering in the cases of thin interior finish, high moisture production and low ventilation. Because the layer under the hygroscopic material also has buffering capacity, the difference of using various thicknesses of material is not obvious. Frequent ventilation reduces the buffering effect but improves the RH optimality.


2011 ◽  
Vol 3 (1) ◽  
pp. 15
Author(s):  
Arhamsyah Arhamsyah

Research on the utilization of bamboo as a raw material layer interior products have been made. This research aims to determine the nature of plybamboo in terms of technical aspects / processes of manufacture, physical and mechanical, the influence of weight variation labur adhesive, adhesive types and kinds of bamboo products plybamboo.This type of bamboo used is sweet bamboo (Gigantochloa atter Kurz) and bamboo lear (Gigantochloa apus Kurz).The adhesive used was adhesive Polyvinil Acetat (PVAc) and Chloroprene with adhesive labur weight each - each 150 gr/m2, 200 gr/m2 and 250 gr/m2. The parameters tested were water content, density, flexural strength of dry and delamination.The results showed that the treatment using bamboo material with adhesive Chloroprene sweet heavy labur 250 gr/m2 produce the best plybamboo.Keywords: bamboo, glue, physical, mechanical


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4360
Author(s):  
Umar Nawaz Bhatti ◽  
Salem Bashmal ◽  
Sikandar Khan ◽  
Rached Ben-Mansour

Thermoacoustic refrigerators have huge potential to replace conventional refrigeration systems as an alternative clean refrigeration technology. These devices utilize conversion of acoustic power and heat energy to generate the desired cooling. The stack plays a pivotal role in the performance of Standing Wave Thermoacoustic Refrigerators (SWTARs), as the heat transfer takes place across it. Performance of stacks can be significantly improved by making an arrangement of different materials inside the stack, resulting in anisotropic thermal properties along the length. In the present numerical study, the effect of multi-layered stack on the refrigeration performance of a SWTAR has been evaluated in terms of temperature drop across the stack, acoustic power consumed and device Coefficient of Performance (COP). Two different aspects of multi-layered stack, namely, different material combinations and different lengths of stacked layers, have been investigated. The combinations of four stack materials and length ratios have been investigated. The numerical results showed that multi-layered stacks produce lower refrigeration temperatures, consume less energy and have higher COP value than their homogeneous counterparts. Among all the material combinations of multi-layered stack investigated, stacks composed of a material layer with low thermal conductivity at the ends, i.e., RVC, produced the best performance with an increase of 26.14% in temperature drop value, reduction in the acoustic power consumption by 4.55% and COP enhancement of 5.12%. The results also showed that, for a constant overall length, an increase in length of side stacked material layer results in an increase in values of both temperature drop and COP.


2013 ◽  
Vol 732-733 ◽  
pp. 348-351
Author(s):  
Xiao Peng Huang ◽  
Fang Xin Wan ◽  
Jing Feng Wu

By the force analysis of alfalfa grass powder material layer in work area of circular mould pelletizing system, grass pellet briquetting mechanism when alfalfa grass powder pass work area was explained, function relationship between the thickness of material layer and the circular mould angle was established, force balance equation of material layer differentiation unit under the general conditions was deduced, and the total force of material layer applied by circular mould was obtained. Research result has practical meaning for guiding the process test of grass pellet product and optimizing product structure, and has a certain theoretical reference value for in-depth revealing granulating forming mechanism of hoop standard granulator.


2019 ◽  
Vol 18 (1) ◽  
pp. 67-83
Author(s):  
Elena Vazquez ◽  
Benay Gürsoy ◽  
Jose Pinto Duarte

Shape-changing materials have become increasingly popular among architects in designing responsive systems. One of the greatest challenges of designing with these materials is their dynamic nature, which requires architects to design with the fourth dimension, time. This article presents a study that formalizes the shape-changing behavior of three-dimensional printed wood-based composite materials and the rules that serve to compute their shape-change in response to variations in relative humidity. In this research, we first developed custom three-dimensional printing protocols and analyzed the effects of three-dimensional printing parameters on shape-change. We thereafter three-dimensional printed kirigami geometries to amplify hygroscopic material transformation of wood-based composites.


2014 ◽  
Vol 04 (10) ◽  
pp. 280-287 ◽  
Author(s):  
Md. Shahinul Islam ◽  
Md. Golam Saklayen ◽  
Md. Ferdous Rahman ◽  
Hartmut Baerwolff ◽  
Abu Bakar Md. Ismail

Sign in / Sign up

Export Citation Format

Share Document