A biarc based subdivision scheme for space curve interpolation

2014 ◽  
Vol 31 (9) ◽  
pp. 656-673 ◽  
Author(s):  
Chongyang Deng ◽  
Weiyin Ma
2013 ◽  
Vol 380-384 ◽  
pp. 1555-1557
Author(s):  
Xin Fen Zhang ◽  
Yu Zhen Liu

In this paper we propose a new kind of geometry driven subdivision scheme for curve interpolation. We use cubic Lagrange interpolatory polynomial to construct a new point, selecting parameters by accumulated chord length method. The new scheme is shape preserving. It can overcome the shortcoming of the initial four point subdivision scheme proposed.


2012 ◽  
Vol 586 ◽  
pp. 378-383
Author(s):  
Xin Fen Zhang

ßIn this paper we propose a new kind of nonlinear and geometry driven subdivision scheme for curve interpolation. We introduce serval parameters in the new scheme.When the parameter ß is taken as 0, the new scheme presented in this paper regresses to the initial four point subdivision scheme, and when ß→∞ , the new scheme is convexity preserving. With proper choices of the subdßivision parameters,it can overcome the shortcoming of the initial four point subdivision scheme proposed.


2010 ◽  
Vol 27 (1) ◽  
pp. 48-59 ◽  
Author(s):  
Chongyang Deng ◽  
Guozhao Wang

2008 ◽  
Vol 44 ◽  
pp. 216 ◽  
Author(s):  
M. K. Jena ◽  
P. Shunmugaraj ◽  
P. C. Das

2005 ◽  
Vol 22 (6) ◽  
pp. 531-550 ◽  
Author(s):  
V.P. Kong ◽  
B.H. Ong

2003 ◽  
Vol 141 (3) ◽  
pp. 343-350 ◽  
Author(s):  
Sotiris L. Omirou

Sign in / Sign up

Export Citation Format

Share Document