scholarly journals New uniqueness results of solutions for fractional differential equations with infinite delay

2010 ◽  
Vol 60 (8) ◽  
pp. 2253-2259 ◽  
Author(s):  
Jiqin Deng ◽  
Hailiang Qu

2016 ◽  
Vol 14 (1) ◽  
pp. 370-383 ◽  
Author(s):  
Qixiang Dong ◽  
Can Liu ◽  
Zhenbin Fan

AbstractThis paper is devoted to the study of fractional differential equations with Riemann-Liouville fractional derivatives and infinite delay in Banach spaces. The weighted delay is developed to deal with the case of non-zero initial value, which leads to the unboundedness of the solutions. Existence and uniqueness results are obtained based on the theory of measure of non-compactness, Schaude’s and Banach’s fixed point theorems. As auxiliary results, a fractional Gronwall type inequality is proved, and the comparison property of fractional integral is discussed.



2018 ◽  
Vol 16 (1) ◽  
pp. 1519-1536
Author(s):  
Bashir Ahmad ◽  
Najla Alghamdi ◽  
Ahmed Alsaedi ◽  
Sotiris K. Ntouyas

AbstractWe introduce and study a new kind of nonlocal boundary value problems of multi-term fractional differential equations. The existence and uniqueness results for the given problem are obtained by applying standard fixed point theorems. We also construct some examples for demonstrating the application of the main results.



2020 ◽  
Vol 4 (2) ◽  
pp. 13 ◽  
Author(s):  
Shorog Aljoudi ◽  
Bashir Ahmad ◽  
Ahmed Alsaedi

In this paper, we study a coupled system of Caputo-Hadamard type sequential fractional differential equations supplemented with nonlocal boundary conditions involving Hadamard fractional integrals. The sufficient criteria ensuring the existence and uniqueness of solutions for the given problem are obtained. We make use of the Leray-Schauder alternative and contraction mapping principle to derive the desired results. Illustrative examples for the main results are also presented.



2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Bashir Ahmad ◽  
Sotiris K. Ntouyas

We consider a new class of boundary value problems of nonlinear fractional differential equations with fractional separated boundary conditions. A connection between classical separated and fractional separated boundary conditions is developed. Some new existence and uniqueness results are obtained for this class of problems by using standard fixed point theorems. Some illustrative examples are also discussed.



Author(s):  
Mohamed I. Abbas

This paper is devoted to initial value problems for impulsive fractional differential equations of Caputo–Fabrizio type fractional derivative. By means of Banach’s fixed point theorem and Schaefer’s fixed point theorem, the existence and uniqueness results are obtained. Finally, an example is given to illustrate one of the main results.



Author(s):  
Natthaphong Thongsalee ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

AbstractIn this paper we study a new class of Riemann-Liouville fractional differential equations subject to nonlocal Erdélyi-Kober fractional integral boundary conditions. Existence and uniqueness results are obtained by using a variety of fixed point theorems, such as Banach fixed point theorem, Nonlinear Contractions, Krasnoselskii fixed point theorem, Leray-Schauder Nonlinear Alternative and Leray-Schauder degree theory. Examples illustrating the obtained results are also presented.



Sign in / Sign up

Export Citation Format

Share Document