Modeling salinized wasteland using remote sensing with the integration of decision tree and multiple validation approaches in Hetao irrigation district of China

CATENA ◽  
2022 ◽  
Vol 209 ◽  
pp. 105854
Author(s):  
Yanan Sun ◽  
Xianyue Li ◽  
Haibin Shi ◽  
Jiaqi Cui ◽  
Weigang Wang ◽  
...  
2010 ◽  
Vol 97 (12) ◽  
pp. 1952-1960 ◽  
Author(s):  
Ruihong Yu ◽  
Tingxi Liu ◽  
Youpeng Xu ◽  
Chao Zhu ◽  
Qing Zhang ◽  
...  

2013 ◽  
Vol 38 (5) ◽  
pp. 909-913 ◽  
Author(s):  
Wen-Jie TONG ◽  
Qian LIU ◽  
Fu CHEN ◽  
Xin-Ya WEN ◽  
Zhong-Hao LI ◽  
...  

Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 396
Author(s):  
Junxia Yan ◽  
Yanfei Ma ◽  
Dongyun Zhang ◽  
Zechen Li ◽  
Weike Zhang ◽  
...  

Land surface evapotranspiration (ET) and gross primary productivity (GPP) are critical components in terrestrial ecosystems with water and carbon cycles. Large-scale, high-resolution, and accurately quantified ET and GPP values are important fundamental data for freshwater resource management and help in understanding terrestrial carbon and water cycles in an arid region. In this study, the revised surface energy balance system (SEBS) model and MOD17 GPP algorithm were used to estimate daily ET and GPP at 100 m resolution based on multi-source satellite remote sensing data to obtain surface biophysical parameters and meteorological forcing data as input variables for the model in the midstream oasis area of the Heihe River Basin (HRB) from 2010 to 2016. Then, we further calculated the ecosystem water-use efficiency (WUE). We validated the daily ET, GPP, and WUE from ground observations at a crop oasis station and conducted spatial intercomparisons of monthly and annual ET, GPP, and WUE at the irrigation district and cropland oasis scales. The site-level evaluation results show that ET and GPP had better performance than WUE at the daily time scale. Specifically, the deviations in the daily ET, GPP, and WUE data compared with ground observations were small, with a root mean square error (RMSE) and mean absolute percent error (MAPE) of 0.75 mm/day and 26.59%, 1.13 gC/m2 and 36.62%, and 0.50 gC/kgH2O and 39.83%, respectively. The regional annual ET, GPP, and WUE varied from 300 to 700 mm, 200 to 650 gC/m2, and 0.5 to 1.0 gC/kgH2O, respectively, over the entire irrigation oasis area. It was found that annual ET and GPP were greater than 550 mm and 500 gC/m2, and annual oasis cropland WUE had strong invariability and was maintained at approximately 0.85 gC/kgH2O. The spatial intercomparisons from 2010 to 2016 revealed that ET had similar spatial patterns to GPP due to tightly coupled carbon and water fluxes. However, the WUE spatiotemporal patterns were slightly different from both ET and GPP, particularly in the early and late growing seasons for the oasis area. Our results demonstrate that spatial full coverage and reasonably fine spatiotemporal variation and variability could significantly improve our understanding of water-saving irrigation strategies and oasis agricultural water management practices in the face of water shortage issues.


2019 ◽  
Vol 23 (7) ◽  
pp. 3097-3115 ◽  
Author(s):  
Zhongyi Liu ◽  
Xingwang Wang ◽  
Zailin Huo ◽  
Tammo Siert Steenhuis

Abstract. Rapid population growth is increasing pressure on the world water resources. Agriculture will require crops to be grown with less water. This is especially the case for the closed Yellow River basin, necessitating a better understanding of the fate of irrigation water in the soil. In this paper, we report on a field experiment and develop a physically based model for the shallow groundwater in the Hetao irrigation district in Inner Mongolia, in the arid middle reaches of the Yellow River. Unlike other approaches, this model recognizes that field capacity is reached when the matric potential is equal to the height above the groundwater table and not by a limiting soil conductivity. The field experiment was carried out in 2016 and 2017. Daily moisture contents at five depths in the top 90 cm and groundwater table depths were measured in two fields with a corn crop. The data collected were used for model calibration and validation. The calibration and validation results show that the model-simulated soil moisture and groundwater depth fitted well. The model can be used in areas with shallow groundwater to optimize irrigation water use and minimize tailwater losses.


Author(s):  
Amit Kumar Verma ◽  
P. K. Garg ◽  
K. S. Hari Prasad ◽  
V. K. Dadhwal

Image classification is a compulsory step in any remote sensing research. Classification uses the spectral information represented by the digital numbers in one or more spectral bands and attempts to classify each individual pixel based on this spectral information. Crop classification is the main concern of remote sensing applications for developing sustainable agriculture system. Vegetation indices computed from satellite images gives a good indication of the presence of vegetation. It is an indicator that describes the greenness, density and health of vegetation. Texture is also an important characteristics which is used to identifying objects or region of interest is an image. This paper illustrate the use of decision tree method to classify the land in to crop land and non-crop land and to classify different crops. In this paper we evaluate the possibility of crop classification using an integrated approach methods based on texture property with different vegetation indices for single date LISS IV sensor 5.8 meter high spatial resolution data. Eleven vegetation indices (NDVI, DVI, GEMI, GNDVI, MSAVI2, NDWI, NG, NR, NNIR, OSAVI and VI green) has been generated using green, red and NIR band and then image is classified using decision tree method. The other approach is used integration of texture feature (mean, variance, kurtosis and skewness) with these vegetation indices. A comparison has been done between these two methods. The results indicate that inclusion of textural feature with vegetation indices can be effectively implemented to produce classifiedmaps with 8.33% higher accuracy for Indian satellite IRS-P6, LISS IV sensor images.


2021 ◽  
Author(s):  
Romeu G. Jorge ◽  
Isabel P. de Lima ◽  
João L.M.P. de Lima

<p>In irrigated agricultural areas, where the availability of water for irrigation does not rely on any water storage, water management requires special attention, in particular under large annual and inter-annual variability in the hydrological regime and the uncertainty of climate change. The inherent increased vulnerability of the agro-ecosystem, makes the monitoring of crop conditions and water requirements a valuable tool for improving water use efficiency and, therefore, crop yields.</p><p>This presentation focus on one such agricultural area, located in the Lis Valley (Centre of Portugal), which is a rather vulnerable area also facing drainage and salinity problems. The study aims at contributing to better characterizing the temporal and spatial distribution of rice water requirements during the growing season. Irrigation water sources are the Lis River and its tributaries, which discharges depend directly from precipitation. The most important problems of water distribution in the Lis Valley irrigation district are water shortage and poor water quality in the dry summer period, aggravated by limitations of the irrigation and drainage systems that date back to the end of the 1950’s.</p><p>We report preliminary results on using remote sensing data to better understand rice cropping local conditions, obtained within project GO Lis (PDR2020-101-030913) and project MEDWATERICE (PRIMA/0006/2018). Rice irrigation is traditionally conducted applying continuous flooding, which requires much more irrigation water than non-ponded crops, and therefore needs special attention. In particular, data obtained from satellite Sentinel-2A land surface imagery are compared with data obtained using an unmanned aerial vehicle (UAV). Data for rice cultivated areas during the 2020 cultivation season, together with weather and crop parameters, are used to calculate biophysical indicators and indices of water stress in the vegetation. Actual crop evapotranspiration was appraised with remote sensing based estimates of the crop coefficient (Kc) and used to assess rice water requirements. Procedures and methodologies to estimate Kc were tested, namely those based on vegetation indices such as the Normalized Difference Vegetation Index (NDVI). Results are discussed bearing in mind the usefulness of the diverse tools, based on different resolution data (Sentinel-2A and UAV), for improving the understanding of the impacts of irrigation practices on crop yield and main challenges of rice production and water management in the Lis Valley irrigation district.</p>


Sign in / Sign up

Export Citation Format

Share Document