Lab simulation of soil erosion on cultivated soil slopes with wheat straw incorporation

CATENA ◽  
2022 ◽  
Vol 210 ◽  
pp. 105865
Author(s):  
J.H. Yang ◽  
H.Q. Liu ◽  
J.P. Zhang ◽  
A.E. Rahma ◽  
T.W. Lei
2020 ◽  
Vol 584 ◽  
pp. 124667
Author(s):  
H.Q. Liu ◽  
J.H. Yang ◽  
C.X. Liu ◽  
Y.F. Diao ◽  
D.P. Ma ◽  
...  

1987 ◽  
Vol 67 (4) ◽  
pp. 825-834 ◽  
Author(s):  
M. S. AULAKH ◽  
D. A. RENNIE

The effects of wheat straw incorporation on denitrification, immobilization of N, and C mineralization were investigated at H2O contents of 60, 90 and 120% saturation. Incorporation of increasing levels of straw consistently increased the rate of denitrification for the first 4–8 d, followed by negligible N losses thereafter. In a total period of 96 d, the addition of 1.0% straw increased N losses from 2.5 to 10.1, and from 61.6 to 83.9 μg g−1 in the 60 and 120% water saturation treatments, respectively. The pattern of CO2-C evolved was practically identical to that of the denitrification rate for the initial period when sufficient [Formula: see text] was present. This study has confirmed that in flooded soils, high rates of denitrification will persist only when C is supplied by native or applied organic C sources, provided adequate [Formula: see text] is present. When [Formula: see text] was low, denitrification rates rapidly decreased, even with a sufficient supply of C. Immobilization of fertilizer N (50 μg N g−1 as K15NO3) was very rapid. Around 90% of the total immobilization of applied N occurred within 4 d. Incorporation of 1.0% straw increased the immobilization of fertilizer N from 8.4 to 42.8, and from 1.0 to 7.6% in the 60 and 120% water-saturated treatments, respectively. Remineralization of recently immobilized fertilizer N was observed after 32 d in the 60% saturation treatments only. Key words: Denitrification, wheat straw, mineralization of N


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chen Wang ◽  
Xuehong Ma ◽  
Gang Wang ◽  
Guitong Li ◽  
Kun Zhu

AbstractSoil O2 dynamics have significant influences on greenhouse gas emissions during soil management practice. In this study, we deployed O2-specific planar optodes to visualize spatiotemporal distribution of O2 in soils treated with biological soil disinfestation (BSD). This study aimed to reveal the role of anoxia development on emissions of N2O and CH4 from soil amended with crop residues during BSD period. The incorporation of crop residues includes wheat straw only, wheat straw with biochar and early straw incorporation. The anoxia in soil developed very fast within 3 days, while the O2 in headspace decreased much slower and it became anaerobic after 5 days, which was significantly affected by straw and biochar additions. The N2O emissions were positively correlated with soil hypoxic fraction. The CH4 emissions were not significant until the anoxia dominated in both soil and headspace. The co-application of biochar with straw delayed the anoxia development and extended the hypoxic area in soil, resulting in lower emissions of N2O and CH4. Those results highlight that the soil O2 dynamic was the key variable triggering the N2O and CH4 productions. Therefore, detailed information of soil O2 availability could be highly beneficial for optimizing the strategies of organic amendments incorporation in the BSD technique.


2020 ◽  
Vol 71 (2) ◽  
pp. 134
Author(s):  
Haishui Yang ◽  
Jinxia Feng ◽  
Martin Weih ◽  
Yi Meng ◽  
Yifan Li ◽  
...  

The yield of direct-seeded rice has been shown to decrease after straw amendment. However, the reasons for the yield decrease, and any measures to alleviate it, are currently unknown. We hypothesised that straw return exerts negative effects on soil fertility and on root growth of direct-seeded rice, which subsequently reduces the remobilisation of reserves to grains under continuous flooding (CF); and that alternate wetting and drying (AWD) irrigation can alleviate these negative impacts. Field and greenhouse experiments were conducted to test the hypotheses, by comparing CF and AWD in combination with two wheat-straw treatments (incorporation and mulching). Under CF, wheat-straw incorporation decreased soil available phosphorus by 23–79%, root biomass by 10%, leaf biomass by 13%, and leaf area by 15% compared with the control with no straw incorporation; negative effects on these characteristics were lessened if the straw was mulched. The AWD treatment alleviated the negative effects of straw incorporation compared with CF, and straw mulching with AWD had no negative effects or resulted in positive effects. The results suggest that CF along with straw incorporation limits soil phosphorus availability, root growth and grain yield by affecting photosynthate accumulation and remobilisation. AWD irrigation mitigates these undesirable effects by decreasing soil total reductants, which subsequently increases soil pH and plant-available phosphorus. The proposed AWD treatment could be a promising strategy for the sustainable production of direct-seeded rice.


Soil Research ◽  
2008 ◽  
Vol 46 (3) ◽  
pp. 281 ◽  
Author(s):  
J. Ma ◽  
H. Xu ◽  
Y. Han ◽  
Z. C. Cai ◽  
K. Yagi

Short-term effects of wheat straw incorporation into paddy field include stimulation of CH4 emissions, immobilisation of available N, suppression of rice growth, and accumulation of toxic materials. To study these short-term effects as affected by timing of rice transplantation, a field experiment was conducted at Dapu, China, in 2005. Two levels of wheat straw (0 and 3.75 t/ha) and 2 rice-transplanting times (normal and delayed) were adopted in this experiment. Methane emissions, concentrations of soil mineral N, dry matter accumulations, and grain yields were measured. Delayed rice transplantation had no effect on total CH4 emission from paddy fields incorporated with wheat straw (P > 0.05), but a significant effect on mineralisation of N (P < 0.05), in contrast to the net N immobilisation in the fields where seedlings were transplanted on the normal date. In paddy fields incorporated with wheat straw, delayed transplantation tended to promote rice growth and increase grain yield compared with transplantation on the normal date.


Weed Science ◽  
2011 ◽  
Vol 59 (4) ◽  
pp. 580-586 ◽  
Author(s):  
Linjian Jiang ◽  
Imed Dami ◽  
Hannah M. Mathers ◽  
Warren A. Dick ◽  
Doug Doohan

In the Midwestern United States, winter hilling, consisting of two tillage activities per year, is required in vinifera-grape vineyards for winter protection. However, this practice often leads to severe soil erosion and pesticide offsite movement. The effectiveness of wheat straw mulch as a replacement for soil mounding was investigated as a way of providing winter protection and to mitigate pesticide leaching and runoff. A laboratory experiment was conducted where simazine was applied to wheat straw or bare soil and then followed by simulated rainfalls. When compared with bare soil, straw reduced simazine leaching and runoff by 40 and 68%, respectively. Adsorption or interception, or both, of simazine by straw were responsible for this effect. Additionally, straw reduced soil erosion by 95% and would largely reduce simazine runoff associated with sediment displacement. The first simulated rainfall contributed 70 and 34% of total simazine runoff from bare soil and straw, respectively. In conclusion, mulching with straw during winter months to provide winter protection could be an effective practice for controlling simazine offsite movement and soil erosion in vinifera vineyards.


Soil Research ◽  
2007 ◽  
Vol 45 (5) ◽  
pp. 359 ◽  
Author(s):  
J. Ma ◽  
X. L. Li ◽  
H. Xu ◽  
Y. Han ◽  
Z. C. Cai ◽  
...  

A 3-year field experiment was conducted to study the effects of nitrogen fertiliser and straw application on CH4 and N2O emissions from a paddy rice field in China from 2003 to 2005. Three rates of nitrogen fertiliser (0, 200, and 270 kg N/ha) and 2 levels of wheat straw (0 and 3.75 × 103 kg/ha) were adopted in this experiment. The effect of nitrogen fertiliser application on CH4 emission seemed to be affected by application rate. Nitrogen fertiliser decreased CH4 emission relative to the control when applied at a rate of 200 kg N/ha, but the effect lessened if the application rate was further increased to a rate of 270 kg N/ha. The depressive effect of nitrogen fertiliser application on CH4 emissions from rice fields became more pronounced when wheat straw was also incorporated with fertiliser, compared with nitrogen fertiliser application alone. Straw incorporation significantly enhanced CH4 emission by 3–11 times (P < 0.05). Nitrogen fertiliser application increased N2O emission by 5–6 times when applied at a rate of 200 kg N/ha and by 10–14 times when applied at a rate of 270 kg N/ha. On average, straw incorporation tended to decrease N2O emission by about 30% significant (P > 0.05). More than 50% of seasonal total amount of N2O was emitted within 11 days after fertiliser application at panicle initiation. The global warming potential caused by both CH4 and N2O emissions was affected by nitrogen fertiliser application rate and significantly stimulated by wheat straw incorporation. The global warming potential was lowest when nitrogen fertiliser was applied at a rate of 200 kg N/ha.


Sign in / Sign up

Export Citation Format

Share Document