Soil C, N, P stocks and stoichiometry as related to land use types and erosion conditions in lateritic red soil region, south China

CATENA ◽  
2022 ◽  
Vol 210 ◽  
pp. 105888
Author(s):  
Xian Tang ◽  
Jiashuai Hu ◽  
Ying Lu ◽  
Jingchi Qiu ◽  
Yuqing Dong ◽  
...  
Keyword(s):  
Land Use ◽  
Red Soil ◽  
Soil C ◽  
2021 ◽  
Author(s):  
Xian Tang ◽  
Jiashuai Hu ◽  
Ying Lu ◽  
Jingchi Qiu ◽  
Yuqing Dong ◽  
...  
Keyword(s):  
Land Use ◽  
Red Soil ◽  
Soil C ◽  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Ruirui Cao ◽  
Longchi Chen ◽  
Xincun Hou ◽  
Xiaotao Lü ◽  
Haimei Li

Abstract Background Despite the crucial role of nitrogen (N) availability in carbon (C) cycling in terrestrial ecosystems, soil organic C (SOC) mineralization in different sizes of soil aggregates under various land use types and their responses to N addition is not well understood. To investigate the responses of soil C mineralization in different sized aggregates and land use types to N addition, an incubation experiment was conducted with three aggregate-size classes (2000, 250, and 53 μm) and two land use types (a Chinese fir plantation and a paddy land). Results Cumulative C mineralization of the < 53-μm fractions was the highest and that of microaggregates was the lowest in both forest and paddy soils, indicating that soil aggregates enhanced soil C stability and reduced the loss of soil C. Cumulative C mineralization in all sizes of aggregates treated with N addition decreased in forest soils, but that in microaggregates and the < 53-μm fraction increased in paddy soils treated with 100 μg N g−1. Moreover, the effect sizes of N addition on C mineralization of forest soils were below zero, but those of paddy soils were above zero. These data indicated that N addition decreased SOC mineralization of forest soils but increased that of paddy soils. Conclusions Soil aggregates play an important role in soil C sequestration, and decrease soil C loss through the increase of soil C stability, regardless of land use types. N addition has different effects on soil C mineralization in different land use types. These results highlight the importance of soil aggregates and land use types in the effects of N deposition on the global terrestrial ecosystem C cycle.


Soil Research ◽  
2015 ◽  
Vol 53 (2) ◽  
pp. 154 ◽  
Author(s):  
K. M. Damsma ◽  
M. T. Rose ◽  
T. R. Cavagnaro

In a broad-scale survey across pasture-based grazing systems in south-eastern Victoria, soil biological and chemical properties were measured in an effort to establish baseline levels for commonly used indicators of soil health. Although soil properties were highly variable among sites and biological properties were difficult to predict, total soil C was found to be closely associated with soil cation exchange capacity (CEC). Importantly, the strength and nature of relationships between soil properties differed among soil textural classes. We also measured a range of soil and vegetation properties in a small number of patches of remnant vegetation and their adjacent grazed pastures. This was done in an effort to assess the sensitivity of these measures when used on samples collected from strongly contrasting land-use types. Although some factors, such as mycorrhizal colonisation of roots and soil C, did differ between the two land-use types, other factors measured in this study did not. Together, the findings of this survey provide baseline information on the landscape scale for commonly used indicators of soil health. The study explores relationships between these soil properties and assesses how they differ between two strongly contrasting land-use types. The results are discussed in the context of monitoring soil and vegetation attributes relevant to soil health.


2020 ◽  
Vol 17 (8) ◽  
pp. 2149-2167 ◽  
Author(s):  
Sheila Wachiye ◽  
Lutz Merbold ◽  
Timo Vesala ◽  
Janne Rinne ◽  
Matti Räsänen ◽  
...  

Abstract. Field measurement data on greenhouse gas (GHG) emissions are still scarce for many land-use types in Africa, causing a high level of uncertainty in GHG budgets. To address this gap, we present in situ measurements of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) emissions from the lowlands of southern Kenya. We conducted eight chamber measurement campaigns on gas exchange from four dominant land-use types (LUTs) comprising (1) cropland, (2) bushland, (3) grazing land, and (4) conservation land between 29 November 2017 and 3 November 2018, accounting for regional seasonality (wet and dry seasons and transitions periods). Mean CO2 emissions for the whole observation period were the highest by a significant margin (p value < 0.05) in the conservation land (75±6 mg CO2-C m−2 h−1) compared to the three other sites, which ranged from 45±4 mg CO2-C m−2 h−1 (bushland) to 50±5 mg CO2-C m−2 h−1 (grazing land). Furthermore, CO2 emissions varied between seasons, with significantly higher emissions in the wet season than the dry season. Mean N2O emissions were highest in cropland (2.7±0.6 µg N2O-N m−2 h−1) and lowest in bushland (1.2±0.4  µg N2O-N m−2 h−1) but did not vary with season. In fact, N2O emissions were very low both in the wet and dry seasons, with slightly elevated values during the early days of the wet seasons in all LUTs. On the other hand, CH4 emissions did not show any significant differences across LUTs and seasons. Most CH4 fluxes were below the limit of detection (LOD, ±0.03 mg CH4-C m−2 h−1). We attributed the difference in soil CO2 emissions between the four sites to soil C content, which differed between the sites and was highest in the conservation land. In addition, CO2 and N2O emissions positively correlated with soil moisture, thus an increase in soil moisture led to an increase in emissions. Furthermore, vegetation cover explained the seasonal variation in soil CO2 emissions as depicted by a strong positive correlation between the normalized difference vegetation index (NDVI) and CO2 emissions, most likely because, with more green (active) vegetation cover, higher CO2 emissions occur due to enhanced root respiration compared to drier periods. Soil temperature did not show a clear correlation with either CO2 or N2O emissions, which is likely due to the low variability in soil temperature between seasons and sites. Based on our results, soil C, active vegetation cover, and soil moisture are key drivers of soil GHG emissions in all the tested LUTs in southern Kenya. Our results are within the range of previous GHG flux measurements from soils from various LUTs in other parts of Kenya and contribute to more accurate baseline GHG emission estimates from Africa, which are key to reducing uncertainties in global GHG budgets as well as for informing policymakers when discussing low-emission development strategies.


2021 ◽  
Vol 13 (6) ◽  
pp. 1110
Author(s):  
Shengsheng Han ◽  
Suxia Liu ◽  
Shi Hu ◽  
Xianfang Song ◽  
Xingguo Mo

Studies of evapotranspiration on remote tropical coral islands are important to explore and sustain scarce freshwater resources. However, there is a significant knowledge gap between research to evaluate evapotranspiration based on remote sensing methods and the influences of different land use types on water dynamics on reclaimed coral islands. This study applied the remote-sensing-based Vegetation Interfaces Processes (VIP-RS) model to estimate actual evapotranspiration (ETa) on Zhaoshu Island, Yongxing Island, and Yongshu Island in the South China Sea from 2016 to 2019. The results showed that the average annual ETa of Zhaoshu Island, Yongxing Island, and Yongshu Island was 685 mm, 530 mm, and 210 mm, respectively. Annual transpiration (Ec) and soil evaporation (Es) exhibited similar patterns on the natural islands; however, Es controlled the water consumption on the reclaimed islands. Water dynamics exhibited seasonal fluctuations due to the uneven distribution of precipitation (PRP). However, ETa of the natural islands was higher than PRP in the dry season, indicating vegetation has to absorb water from the groundwater to sustain growth. The results also agreed with the analysis of dominant driving factors based on partial correlation analysis, which demonstrated that the Normalized Difference Vegetation Index (NDVI) is the most important factor that influences ETa, while relative humidity (RH) controlled the bare land or sparsely vegetated areas on the reclaimed islands. The setting of different land use types showed that vegetation and built-up or hardened roads took control of evapotranspiration and rainwater collection, respectively, which play important roles in water dynamics on corals islands. The evaluation of ETa based on a remote-sensing-based model overcame the difficulty in fieldwork observation, which improves the certainty and accuracy at a spatial scale. In addition, it gave us a new reference to protect and manage scarce freshwater resources properly.


2008 ◽  
Vol 124 (1-2) ◽  
pp. 125-135 ◽  
Author(s):  
Hui Liu ◽  
Ping Zhao ◽  
Ping Lu ◽  
Yue-Si Wang ◽  
Yong-Biao Lin ◽  
...  

Pedobiologia ◽  
2015 ◽  
Vol 58 (2-3) ◽  
pp. 73-79 ◽  
Author(s):  
Huan Deng ◽  
Yong-Jie Yu ◽  
Jin-E. Sun ◽  
Jin-Bo Zhang ◽  
Zu-Cong Cai ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253160
Author(s):  
Huan Yang ◽  
Xuan Song ◽  
Yun Zhao ◽  
Weitong Wang ◽  
Zhennan Cheng ◽  
...  

Soil C, N contents and C:N stoichiometry are important indicators of soil quality, the variation characteristics of which have great significance for soil carbon-nitrogen cycle and sustainable utilization. Based on 597 observations along with soil profiles of 0–20cm depth in the 1980s and the 2010s, the temporal and spatial variations of soil C, N contents and C:N stoichiometry in the major grain-producing region of the North China Plain were illustrated. Results showed that there were significant changes in soil C, N contents over time, with increasing rates of 60.47% and 50%, respectively. The changes of C, N contents resulting in a general improvement of C:N stoichiometry. There was a significant decline in nugget effects of soil C, N contents from the 1980s to 2010s, the spatial autocorrelation of soil nutrients showed an increasing trend, and the effect of random variation was reduced. C:N stoichiometry was higher in Huixian City and Weihui City, and lower in Yanjin County, an apparent decline was observed in the spatial difference of soil C:N stoichiometry from the 1980s to 2010s. Soil C, N contents and C:N stoichiometry differed among soil types, agricultural land-use types, and topography in space. The temperature, precipitation, and fertilization structure were considered as the main factors that induce the temporal variations. These findings indicated that the soil nutrient elements in the farmland ecosystems changed in varying degrees in both time and space scales, and the variation was influenced by soil types, land-use types, topography, meteorological factors, and fertilization structure.


Author(s):  
Trần Thanh Đức

This research carried out in Huong Vinh commune, Huong Tra town, Thua Thien Hue province aimed to identify types of land use and soil characteristics. Results showed that five crops are found in Huong Vinh commune including rice, peanut, sweet potato, cassava and vegetable. There are two major soil orders with four soil suborders classified by FAO in Huong Vinh commune including Fluvisols (Dystric Fluvisols<em>, </em>Gleyic Fluvisols and Cambic Fluvisols) and Arenosols (Haplic Arenosols). The results from soil analysis showed that three soil suborders including Dystric Fluvisols<em>, </em>Gleyic Fluvisols and Cambic Fluvisols belonging to Fluvisols were clay loam in texture, low pH, low in OC, total N, total P<sub>2</sub>O<sub>5</sub> and total K<sub>2</sub>O. Meanwhile, the Haplic Arenosols was loamy sand in texture, poor capacity to hold OC, total N, total P<sub>2</sub>O<sub>5</sub> and total K<sub>2</sub>O


Sign in / Sign up

Export Citation Format

Share Document