Temperature sensitivity of organic matter mineralization as affected by soil edaphic properties and substrate quality

CATENA ◽  
2022 ◽  
Vol 210 ◽  
pp. 105901
Author(s):  
Chenxin Feng ◽  
Douglas L. Godbold ◽  
Hailong Sun ◽  
Lina Wei ◽  
Yandong Zhang
Author(s):  
Xiaomeng Wei ◽  
Tida Ge ◽  
Chuanfa Wu ◽  
Shuang Wang ◽  
Kyle Mason-Jones ◽  
...  

2016 ◽  
Vol 215 ◽  
pp. 30-39 ◽  
Author(s):  
Evan A.N. Marks ◽  
Stefania Mattana ◽  
Josep M. Alcañiz ◽  
Emilio Pérez-Herrero ◽  
Xavier Domene

2012 ◽  
Vol 76 (5) ◽  
pp. 1634-1643 ◽  
Author(s):  
Carsten W. Mueller ◽  
Svetlana Schlund ◽  
Jörg Prietzel ◽  
Ingrid Kögel-Knabner ◽  
Martin Gutsch

2016 ◽  
Vol 95 ◽  
pp. 60-69 ◽  
Author(s):  
Lumbani Mwafulirwa ◽  
Elizabeth M. Baggs ◽  
Joanne Russell ◽  
Timothy George ◽  
Nicholas Morley ◽  
...  

2013 ◽  
Vol 10 (3) ◽  
pp. 2089-2103 ◽  
Author(s):  
T. Wutzler ◽  
M. Reichstein

Abstract. Interactions between different qualities of soil organic matter (SOM) affecting their turnover are rarely represented in models. In this study, we propose three mathematical strategies at different levels of abstraction to represent those interactions. By implementing these strategies into the Introductory Carbon Balance Model (ICBM) and applying them to several scenarios of litter input, we show that the different levels of abstraction are applicable at different timescales. We present a simple one-parameter equation of substrate limitation that can straightforwardly be implemented into other models of SOM dynamics at decadal timescale. The study demonstrates how substrate quality interactions can explain patterns of priming effects, accelerate turnover in FACE experiments, and the slowdown of decomposition in long-term bare fallow experiments as an effect of energy limitation of microbial biomass. The mechanisms of those interactions need to be further scrutinized empirically for a more complete understanding. Overall, substrate quality interactions contribute to both understanding and quantitatively modelling SOM dynamics.


Sign in / Sign up

Export Citation Format

Share Document