The dust deposition model (DDM): An empirical model for monitoring dust deposition using meteorological data over the Isfahan province in central Iran

CATENA ◽  
2022 ◽  
Vol 211 ◽  
pp. 105952
Author(s):  
Mohsen Bagheri-Bodaghabadi ◽  
Mohammad Jafari
2013 ◽  
Vol 13 (4) ◽  
pp. 1797-1808 ◽  
Author(s):  
M. Shahgedanova ◽  
S. Kutuzov ◽  
K. H. White ◽  
G. Nosenko

Abstract. A significant desert dust deposition event occurred on Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009, where the deposited dust later appeared as a brown layer in the snow pack. An examination of dust transportation history and analysis of chemical and physical properties of the deposited dust were used to develop a new approach for high-resolution "provenancing" of dust deposition events recorded in snow pack using multiple independent techniques. A combination of SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived with HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (ca. 100 km) resolution. Dust, deposited on 5 May 2009, originated in the foothills of the Djebel Akhdar in eastern Libya where dust sources were activated by the intrusion of cold air from the Mediterranean Sea and Saharan low pressure system and transported to the Caucasus along the eastern Mediterranean coast, Syria and Turkey. Particles with an average diameter below 8 μm accounted for 90% of the measured particles in the sample with a mean of 3.58 μm, median 2.48 μm. The chemical signature of this long-travelled dust was significantly different from the locally-produced dust and close to that of soils collected in a palaeolake in the source region, in concentrations of hematite. Potential addition of dust from a secondary source in northern Mesopotamia introduced uncertainty in the "provenancing" of dust from this event. Nevertheless, the approach adopted here enables other dust horizons in the snowpack to be linked to specific dust transport events recorded in remote sensing and meteorological data archives.


BIBECHANA ◽  
2014 ◽  
Vol 11 ◽  
pp. 25-33
Author(s):  
Krishna R Adhikari ◽  
Shekhar Gurung ◽  
Binod K Bhattarai

Solar radiation is the best option and cost effective energy resources of this globe. Only a few stations are there in developing and under developed countries including Nepal to monitor solar radiation and sunshine hours to generate a rational and accurate solar energy database. In this study, daily global solar radiation, and ubiquitous meteorological data (temperature and relative humidity) rather than rarely available sunshine hours have been used for Biratnagar, Kathmandu, Pokhara and Jumla to derive regression constants and hence to develop an empirical model. The model estimated global solar radiation is found to be in close agreement with measured values of respective sites. The estimated values were compared with Angstrom-Prescott model and examined using the statistical tools. Thus, the linear regression technique can be used to develop model at any location in the world. The resultant model may then be used to estimate the missing data of solar radiation for the respective sites and also can be used to estimate global solar radiation for the locations of similar geographic and meteorological characteristic. DOI: http://dx.doi.org/10.3126/bibechana.v11i0.10376   BIBECHANA 11(1) (2014) 25-33


Atmosphere ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 391 ◽  
Author(s):  
João Gobo ◽  
Marlon Faria ◽  
Emerson Galvani ◽  
Fabio Goncalves ◽  
Leonardo Monteiro

The bioclimatic well-being of individuals is associated with the environmental characteristics of where they live. Knowing the relationships between local and regional climatic variables as well as the physical characteristics of a given region and their implications on thermal comfort is important for identifying aspects of thermal sensation in the population. The aim of this study is to develop an empirical model of human thermal comfort based on subjective and individual environmental patterns observed in the city of Santa Maria, located in the state of Rio Grande do Sul, Brazil (Subtropical climate). Meteorological data were collected by means of an automatic meteorological station installed in the city center, which contained sensors measuring global solar radiation, air temperature, globe temperature (via a grey globe thermometer), relative humidity and wind speed and direction. A total of 1720 people were also interviewed using a questionnaire adapted from the model recommended by ISO 10551. Linear regressions were performed to obtain the predictive model. The observed results proposed a new empirical model for subtropical climate, the Brazilian Subtropical Index (BSI), which was verified to be more than 79% accurate, with a coefficient of determination of 0.926 and an adjusted R2 value of 0.924.


2013 ◽  
Vol 7 (5) ◽  
pp. 1481-1498 ◽  
Author(s):  
S. Kutuzov ◽  
M. Shahgedanova ◽  
V. Mikhalenko ◽  
P. Ginot ◽  
I. Lavrentiev ◽  
...  

Abstract. The first record of dust deposition events on Mt. Elbrus, Caucasus Mountains derived from a snow pit and a shallow firn core is presented for the 2009–2012 period. A combination of isotopic analysis, SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived using the HYSPLIT model and analyses of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (ca. 20–100 km) resolution. Seventeen dust deposition events were detected; fourteen occurred in March–June, one in February and two in October. Four events originated in the Sahara, predominantly in northeastern Libya and eastern Algeria. Thirteen events originated in the Middle East, in the Syrian Desert and northern Mesopotamia, from a mixture of natural and anthropogenic sources. Dust transportation from Sahara was associated with vigorous Saharan depressions, strong surface winds in the source region and mid-tropospheric southwesterly flow with daily winds speeds of 20–30 m s−1 at 700 hPa level. Although these events were less frequent than those originating in the Middle East, they resulted in higher dust concentrations in snow. Dust transportation from the Middle East was associated with weaker depressions forming over the source region, high pressure centred over or extending towards the Caspian Sea and a weaker southerly or southeasterly flow towards the Caucasus Mountains with daily wind speeds of 12–18 m s−1 at 700 hPa level. Higher concentrations of nitrates and ammonium characterised dust from the Middle East deposited on Mt. Elbrus in 2009 indicating contribution of anthropogenic sources. The modal values of particle size distributions ranged between 1.98 μm and 4.16 μm. Most samples were characterised by modal values of 2.0–2.8 μm with an average of 2.6 μm and there was no significant difference between dust from the Sahara and the Middle East.


2021 ◽  
Vol 45 (2) ◽  
pp. 367-372
Author(s):  
Reza Nikbakht ◽  
Marzieh Arokh ◽  
Rouhullah Dehghani ◽  
Davarkhah Rabbani ◽  
Mohammad Bagher Miranzadeh

2016 ◽  
Vol 281 (3) ◽  
pp. 283-311
Author(s):  
Rezvan Mehvari ◽  
Moussa Noghreyan ◽  
Mortaza Sharifi ◽  
Mohammad Ali Makizadeh ◽  
Seyed Hassan Tabatabaei

2020 ◽  
Vol 44 (1) ◽  
pp. 153
Author(s):  
H. Kassiri ◽  
R. Dehghani ◽  
M. Kaviani ◽  
M. Dehghani ◽  
M. Kasiri

Sign in / Sign up

Export Citation Format

Share Document