Upstream 2000 ha is the boundary of the stream water nitrogen and phosphorus saturation concentration threshold in the subtropical agricultural catchment

CATENA ◽  
2022 ◽  
Vol 211 ◽  
pp. 105960
Author(s):  
Ji Liu ◽  
Xinliang Liu ◽  
Yi Wang ◽  
Yong Li ◽  
Yuyuan Li ◽  
...  
2018 ◽  
Vol 27 (3) ◽  
pp. 203 ◽  
Author(s):  
Ashley J. Rust ◽  
Terri S. Hogue ◽  
Samuel Saxe ◽  
John McCray

Wildfires are increasing in size and severity in forested landscapes across the Western United States. Not only do fires alter land surfaces, but they also affect the surface water quality in downstream systems. Previous studies of individual fires have observed an increase in various forms of nutrients, ions, sediments and metals in stream water for different post-fire time periods. In this research, data were compiled for over 24 000 fires across the western United States to evaluate post-fire water-quality response. The database included millions of water-quality data points downstream of these fires, and was synthesised along with geophysical data from each burned watershed. Data from 159 fires in 153 burned watersheds were used to identify common water-quality response during the first 5 years after a fire. Within this large dataset, a subset of seven fires was examined further to identify trends in water-quality response. Change-point analysis was used to identify moments in the post-fire water-quality data where significant shifts in analyte concentrations occurred. Evaluating individual fires revealed strong initial increases or decreases in concentrations, depending on the analyte, that are masked when averaged over 5 years. Evidence from this analysis shows significant increases in nutrient flux (different forms of nitrogen and phosphorus), major-ion flux and metal concentrations are the most common changes in stream water quality within the first 5 years after fire. Dissolved constituents of ions and metals tended to decrease in concentration 5 years after fire whereas particulate matter concentration continued to increase. Assembling this unique and extensive dataset provided the opportunity to determine the most common post-fire water-quality changes in the large and diverse Western USA. Results from this study could inform studies in other parts of the world, will help parameterise and validate post-fire water-quality models, and assist communities affected by wildfire to anticipate changes to their water quality.


The article presents the results of a study on the result of irrigation erosion, within one irrigation map, soils are divided into non, eroded, medium, strongly eroded and soil accumulations. To obtain an evenly large yield of raw cotton, the annual NPK rates on the slope should be differentiated.


2004 ◽  
Vol 13 (1) ◽  
pp. 27 ◽  
Author(s):  
Scott L. Stephens ◽  
Thomas Meixner ◽  
Mark Poth ◽  
Bruce McGurk ◽  
Dale Payne

Before Euro-American settlement fire was a common process in the forests of the Lake Tahoe Basin. The combination of drought, fire suppression, and past harvesting has produced ecosystems that are susceptible to high-severity wildfires. Consequently, a program of prescribed fire has been recommended but there is incomplete understanding of the ecological effects of fuels treatments, especially with regard to how treatments will affect the flow of nutrients to Lake Tahoe. Nitrogen and phosphorus are the most important nutrients affecting algal growth, and thus lake clarity. Existing data demonstrate a long-term shift from a co-limitation by both nitrogen and phosphorus to phosphorus limitation. Two high-consumption, moderate-intensity prescribed fires were conducted to determine their effects on soil and stream water chemistry. Stream water calcium concentrations increased in burned watersheds whereas soluble reactive phosphorus concentrations were not significantly different. Prescribed fires released calcium and raised soil pH and this may have resulted in the incorporation of phosphorus into insoluble forms. Stream monitoring data indicates water quality effects last for ~3 months. Prescribed fires did not significantly increase the amount of soluble reactive phosphorus in stream waters. However, additional research is needed to determine if prescribed fire increases erosion or movement of particulate P, particularly in areas with steep slopes.


2002 ◽  
Vol 59 (5) ◽  
pp. 865-874 ◽  
Author(s):  
Walter K Dodds ◽  
Val H Smith ◽  
Kirk Lohman

Knowledge of factors limiting benthic algal (periphyton) biomass is central to understanding energy flow in stream ecosystems and stream eutrophication. We used several data sets to determine how water column nutrients and nonnutrient factors are linked to periphytic biomass and if the ecoregion concept is applicable to nutrient–periphyton relationships. Literature values for seasonal means of biomass of periphyton, nutrient concentrations, and other stream characteristics were collected for almost 300 sampling periods from temperate streams. Data for benthic chlorophyll and nutrient concentrations from a subset of 620 stations in the United States National Stream Water-Quality Monitoring Networks were also analyzed. The greatest portion of variance in models for the mean and maximum biomass of benthic stream algae (about 40%) was explained by concentrations of total N and P. Breakpoint regression and a two-dimensional Kolmogorov–Smirnov statistical technique established significant breakpoints of about 30 µg total P·L–1 and 40 µg total N·L–1, above which mean chlorophyll values were substantially higher. Ecoregion effects on nutrient–chlorophyll relationships were weak. Ecoregion effects were cross-correlated with anthropogenic effects such as percent urban and cropland area in the watershed and population density. Thus, caution is necessary to separate anthropogenic effects from natural variation at the ecoregion level.


2004 ◽  
Vol 70 (9) ◽  
pp. 5266-5273 ◽  
Author(s):  
Cláudia Pascoal ◽  
Fernanda Cássio

ABSTRACT The contribution of fungi and bacteria to the decomposition of alder leaves was examined at two reference and two polluted sites in the Ave River (northwestern Portugal). Leaf mass loss, microbial production from incorporation rates of radiolabeled compounds into biomolecules, fungal biomass from ergosterol concentration, sporulation rates, and diversity of aquatic hyphomycetes associated with decomposing leaves were determined. The concentrations of organic nutrients and of inorganic nitrogen and phosphorus in the stream water was elevated and increased at downstream sites. Leaf decomposition rates were high (0.013 day−1 < k < 0.042 day−1), and the highest value was estimated at the most downstream polluted site, where maximum values of microbial production and fungal biomass and sporulation were found. The slowest decomposition occurred at the other polluted site, where, along with the nutrient enrichment, the lowest current velocity and dissolved-oxygen concentration in water were observed. At this site, fungal production, biomass, and sporulation were depressed, suggesting that stimulation of fungal activity by increased nutrient concentrations might be offset by other factors. Although bacterial production was higher at polluted sites, fungi accounted for more than 94% of the total microbial net production. Fungal yield coefficients varied from 10.2 to 13.6%, while those of bacteria were less than 1%. The contribution of fungi to overall leaf carbon loss (29.0 to 38.8%) greatly exceeded that of bacteria (4.2 to 13.9%).


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Neng Yi ◽  
Yan Gao ◽  
Zhenhua Zhang ◽  
Yan Wang ◽  
Xinhong Liu ◽  
...  

Streams are an important sink for anthropogenic N owing to their hydrological connections with terrestrial systems, but main factors influencing the community structure and abundance of denitrifiers in stream water remain unclear. To elucidate the potential impact of varying water properties of different streams on denitrifiers, the abundance and community of three denitrifying genes coding for nitrite (nirK, nirS) and nitrous oxide (nosZ) reductase were investigated in 11 streams inlets at the north part of Dianchi Lake. The DGGE results showed the significant pairwise differences in community structure ofnirK, nirS, andnosZgenes among different streams. The results of redundancy analysis (RDA) confirmed that nitrogen and phosphorus concentrations, pH, and temperature in waters were the main environmental factors leading to a significant alteration in the community structure of denitrifiers among different streams. The denitrifying community size was assessed by quantitative PCR (qPCR) of thenirS, nirK, andnosZgenes. The abundance ofnirK, nirS, andnosZwas positively associated with concentrations of total N (TN) andPO43- (p<0.001). The difference in spatial patterns betweennirKandnirScommunity diversity, in combination with the spatial distribution of thenirS/nirKratio, indicated the occurrence of habitat selection for these two types of denitrifiers in the different streams. The results indicated that the varying of N species andPO43- together with pH and temperature would be the main factors shaping the community structure of denitrifiers. Meanwhile, the levels of N in water, together withPO43- , tend to affect the abundance of denitrifiers.


2020 ◽  
Vol 85 ◽  
pp. 47-58
Author(s):  
Y Jiang ◽  
Y Liu

Various studies have observed that increased nutrient supply promotes the growth of bloom-forming cyanobacteria, but only a limited number of studies have investigated the influence of increased nutrient supply on bloom-forming cyanobacteria at the proteomic level. We investigated the cellular and proteomic responses of Microcystis aeruginosa to elevated nitrogen and phosphorus supply. Increased supply of both nutrients significantly promoted the growth of M. aeruginosa and the synthesis of chlorophyll a, protein, and microcystins. The release of microcystins and the synthesis of polysaccharides negatively correlated with the growth of M. aeruginosa under high nutrient levels. Overexpressed proteins related to photosynthesis, and amino acid synthesis, were responsible for the stimulatory effects of increased nutrient supply in M. aeruginosa. Increased nitrogen supply directly promoted cyanobacterial growth by inducing the overexpression of the cell division regulatory protein FtsZ. NtcA, that regulates gene transcription related to both nitrogen assimilation and microcystin synthesis, was overexpressed under the high nitrogen condition, which consequently induced overexpression of 2 microcystin synthetases (McyC and McyF) and promoted microcystin synthesis. Elevated nitrogen supply induced the overexpression of proteins involved in gas vesicle organization (GvpC and GvpW), which may increase the buoyancy of M. aeruginosa. Increased phosphorus level indirectly affected growth and the synthesis of cellular substances in M. aeruginosa through the mediation of differentially expressed proteins related to carbon and phosphorus metabolism. This study provides a comprehensive description of changes in the proteome of M. aeruginosa in response to an increased supply of 2 key nutrients.


Author(s):  
Valeriy G. Yakubenko ◽  
Anna L. Chultsova

Identification of water masses in areas with complex water dynamics is a complex task, which is usually solved by the method of expert assessments. In this paper, it is proposed to use a formal procedure based on the application of the method of optimal multiparametric analysis (OMP analysis). The data of field measurements obtained in the 68th cruise of the R/V “Academician Mstislav Keldysh” in the summer of 2017 in the Barents Sea on the distribution of temperature, salinity, oxygen, silicates, nitrogen, and phosphorus concentration are used as a data for research. A comparison of the results with data on the distribution of water masses in literature based on expert assessments (Oziel et al., 2017), allows us to conclude about their close structural similarity. Some differences are related to spatial and temporal shifts of measurements. This indicates the feasibility of using the OMP analysis technique in oceanological studies to obtain quantitative data on the spatial distribution of different water masses.


Sign in / Sign up

Export Citation Format

Share Document