Effects of spatial variations in rock fragments related to tillage on hydrological processes and sediment transport

CATENA ◽  
2022 ◽  
Vol 211 ◽  
pp. 105963
Author(s):  
Jiadong Dai ◽  
Jianhui Zhang ◽  
Ke Xue ◽  
Feng Yang ◽  
Fucheng Huang ◽  
...  
1984 ◽  
Vol 1 (19) ◽  
pp. 91 ◽  
Author(s):  
Ichiro Deguchi ◽  
Toru Sawaragi

Time and spatial variations of sediment concentration of both bed load and suspended load in the process of two-dimensional beach deformation were investigated experimentally. At the same time, the relation between the velocities of water-particle and sediment migration was analyzed theoretically. By using those results,a net rate of on-offshore sediment_ transport in the process of two-dimensional model beach deformation qf was calculated on the basis of sediment flux. It is found that Qf coincides fairly well with .the net rate of on-offshore sediment transport calculated from the change of water depth.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2179
Author(s):  
Vahid Rafiei ◽  
Afshin Ghahramani ◽  
Duc-Anh An-Vo ◽  
Shahbaz Mushtaq

Study region: North Johnstone catchment, located in the north east of Australia. The catchment has wet tropical climate conditions and is one of the major sediment contributors to the Great Barrier Reef. Study focus: The purpose of this paper was to identify soil erosion hotspots through simulating hydrological processes, soil erosion and sediment transport using the Soil and Water Assessment Tool (SWAT). In particular, we focused on predictive uncertainty in the model evaluations and presentations—a major knowledge gap for hydrology and soil erosion modelling in the context of Great Barrier Reef catchments. We carried out calibration and validation along with uncertainty analysis for streamflow and sediment at catchment and sub-catchment scales and investigated details of water balance components, the impact of slope steepness and spatio-temporal variations on soil erosion. The model performance in simulating actual evapotranspiration was compared with those of the Australian Landscape Water Balance (AWRA-L) model to increase our confidence in simulating water balance components. New hydrological insights for the region: The spatial locations of soil erosion hotspots were identified and their responses to different climatic conditions were quantified. Furthermore, a set of land use scenarios were designed to evaluate the effect of reforestation on sediment transport. We anticipate that protecting high steep slopes areas, which cover a relatively small proportion of the catchment (4–9%), can annually reduce 15–26% sediment loads to the Great Barrier Reef.


CATENA ◽  
2016 ◽  
Vol 147 ◽  
pp. 153-166 ◽  
Author(s):  
Yinghu Zhang ◽  
Mingxiang Zhang ◽  
Jianzhi Niu ◽  
Hongli Li ◽  
Rong Xiao ◽  
...  

Author(s):  
D. A. Antonenkov ◽  
◽  
A. E. Shchodro ◽  

The article presents the methodology of hydrological modeling of water flows for constructing flow plans in the design of hydraulic structures. On the basis of these calculations, both the specific costs of bottom and suspended sediments in each flow stream and the deformation of the riverbed at various points in time can be determined. The results of experiments with spatial models of river sections are considered. The developed technique makes it possible to calculate the deformation of the bottom and shores and form a flow organization scheme, which, due to an increase in velocities in some section of the channel, ensures sediment transport to more remote areas of the seashore, up to the open sea.


2020 ◽  
Vol 46 ◽  
pp. 100599
Author(s):  
Aimin Liang ◽  
Zhibao Dong ◽  
Jianjun Qu ◽  
Zhizhu Su ◽  
Bo Wu ◽  
...  

2018 ◽  
Vol 44 (2) ◽  
pp. 475 ◽  
Author(s):  
P. Llorens ◽  
F. Gallart ◽  
C. Cayuela ◽  
M. Roig-Planasdemunt ◽  
E. Casellas ◽  
...  

This paper presents the main results obtained from the study of hydrological processes in the Vallcebre Research Catchments since 1988. Distributed hydrometric measurements, environmental tracers and hydrological modelling were used to understand Mediterranean catchment behaviour and to provide new data to help assess the global change effects on these catchments' water resources. Thirty years of hydrological processes observation in the Vallcebre Research Catchments have increased understanding not only of their hydrological response, but also of the main hydrological and erosion processes characteristic of Mediterranean mountain catchments. This paper briefly summarises the main results obtained since 1988 on ecohydrological processes, hydrological response, runoff generation processes, erosion and sediment transport. Some of the main findings from this research are (i) the importance of temporal variability in precipitation to determine the hydrological processes; (ii) the paramount role played by forest cover in reducing soil water content; (iii) the marked influence of antecedent wetness conditions on runoff generation that determine different runoff responses; (v) the dominant contribution of pre-existing water during floods; (vi) the importance of freezing-thawing processes in badland areas on erosion and the role of summer convective storms in controlling sediment transport.


Sign in / Sign up

Export Citation Format

Share Document