Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson's disease: Involvement of neuroinflammation and neurotrophins

2018 ◽  
Vol 279 ◽  
pp. 111-120 ◽  
Author(s):  
André T.R. Goes ◽  
Cristiano R. Jesse ◽  
Michelle S. Antunes ◽  
Fernando V. Lobo Ladd ◽  
Aliny A.B. Lobo Ladd ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yueran Li ◽  
Jinhua Wu ◽  
Xuming Yu ◽  
Shufang Na ◽  
Ke Li ◽  
...  

CYP2J proteins are present in the neural cells of human and rodent brain regions. The aim of this study was to investigate the role of brain CYP2J in Parkinson’s disease. Rats received right unilateral injection with lipopolysaccharide (LPS) or 6-hydroxydopamine (6-OHDA) in the substantia nigra following transfection with or without the CYP2J3 expression vector. Compared with LPS-treated rats, CYP2J3 transfection significantly decreased apomorphine-induced rotation by 57.3% at day 12 and 47.0% at day 21 after LPS treatment; moreover, CYP2J3 transfection attenuated the accumulation of α-synuclein. Compared with the 6-OHDA group, the number of rotations by rats transfected with CYP2J3 decreased by 59.6% at day 12 and 43.5% at day 21 after 6-OHDA treatment. The loss of dopaminergic neurons and the inhibition of the antioxidative system induced by LPS or 6-OHDA were attenuated following CYP2J3 transfection. The TLR4-MyD88 signaling pathway was involved in the downregulation of brain CYP2J induced by LPS, and CYP2J transfection upregulated the expression of Nrf2 via the inhibition of miR-340 in U251 cells. The data suggest that increased levels of CYP2J in the brain can delay the pathological progression of PD initiated by inflammation or neurotoxins. The alteration of the metabolism of the endogenous substrates (e.g., AA) could affect the risk of neurodegenerative disease.


2016 ◽  
Vol 791 ◽  
pp. 348-354 ◽  
Author(s):  
Liang Xiao-feng ◽  
Zhu Wen-ting ◽  
Xu Yuan-yuan ◽  
Lai Chong-Fa ◽  
Zheng Lu ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 674
Author(s):  
Han-Lin Chiang ◽  
Yih-Ru Wu ◽  
Yi-Chun Chen ◽  
Hon-Chung Fung ◽  
Chiung-Mei Chen

Parkinson’s disease (PD) is a neurodegenerative disease with the pathological hallmark of Lewy bodies and Lewy neurites composed of α-synuclein. The SNP rs591323 is one of the risk loci located near the FGF20 gene that has been implicated in PD. The variation of FGF20 in the 3′ untranslated region was shown to increase α-synuclein expression. We examined the association of rs591323 with the risk of PD in a Taiwanese population and conducted a meta-analysis, including our study and two other studies from China, to further confirm the role of this SNP in Taiwanese/Chinese populations. A total of 586 patients with PD and 586 health controls (HCs) were included in our study. We found that the minor allele (A) and the AA + GA genotype under the dominant model are significantly less frequent in PD than in controls. The meta-analysis consisted of 1950 patients with PD and 2073 healthy controls from three studies. There was significant association between rs591323 and the risk of PD in the additive (Z = −3.96; p < 0.0001) and the dominant models (Z = −4.01; p < 0.0001). Our study results and the meta-analysis support the possible protective role of the rs591323 A allele in PD in Taiwanese/Chinese populations.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 598
Author(s):  
Débora Masini ◽  
Carina Plewnia ◽  
Maëlle Bertho ◽  
Nicolas Scalbert ◽  
Vittorio Caggiano ◽  
...  

In Parkinson’s disease (PD), a large number of symptoms affecting the peripheral and central nervous system precede, develop in parallel to, the cardinal motor symptoms of the disease. The study of these conditions, which are often refractory to and may even be exacerbated by standard dopamine replacement therapies, relies on the availability of appropriate animal models. Previous work in rodents showed that injection of the neurotoxin 6-hydroxydopamine (6-OHDA) in discrete brain regions reproduces several non-motor comorbidities commonly associated with PD, including cognitive deficits, depression, anxiety, as well as disruption of olfactory discrimination and circadian rhythm. However, the use of 6-OHDA is frequently associated with significant post-surgical mortality. Here, we describe the generation of a mouse model of PD based on bilateral injection of 6-OHDA in the dorsal striatum. We show that the survival rates of males and females subjected to this lesion differ significantly, with a much higher mortality among males, and provide a protocol of enhanced pre- and post-operative care, which nearly eliminates animal loss. We also briefly discuss the utility of this model for the study of non-motor comorbidities of PD.


2019 ◽  
Vol 20 (14) ◽  
pp. 3407 ◽  
Author(s):  
Paola Imbriani ◽  
Annalisa Tassone ◽  
Maria Meringolo ◽  
Giulia Ponterio ◽  
Graziella Madeo ◽  
...  

Caspases are a family of conserved cysteine proteases that play key roles in multiple cellular processes, including programmed cell death and inflammation. Recent evidence shows that caspases are also involved in crucial non-apoptotic functions, such as dendrite development, axon pruning, and synaptic plasticity mechanisms underlying learning and memory processes. The activated form of caspase-3, which is known to trigger widespread damage and degeneration, can also modulate synaptic function in the adult brain. Thus, in the present study, we tested the hypothesis that caspase-3 modulates synaptic plasticity at corticostriatal synapses in the phosphatase and tensin homolog (PTEN) induced kinase 1 (PINK1) mouse model of Parkinson’s disease (PD). Loss of PINK1 has been previously associated with an impairment of corticostriatal long-term depression (LTD), rescued by amphetamine-induced dopamine release. Here, we show that caspase-3 activity, measured after LTD induction, is significantly decreased in the PINK1 knockout model compared with wild-type mice. Accordingly, pretreatment of striatal slices with the caspase-3 activator α-(Trichloromethyl)-4-pyridineethanol (PETCM) rescues a physiological LTD in PINK1 knockout mice. Furthermore, the inhibition of caspase-3 prevents the amphetamine-induced rescue of LTD in the same model. Our data support a hormesis-based double role of caspase-3; when massively activated, it induces apoptosis, while at lower level of activation, it modulates physiological phenomena, like the expression of corticostriatal LTD. Exploring the non-apoptotic activation of caspase-3 may contribute to clarify the mechanisms involved in synaptic failure in PD, as well as in view of new potential pharmacological targets.


2019 ◽  
Vol 20 (3) ◽  
pp. 696 ◽  
Author(s):  
Dong-Hee Choi ◽  
In-Ae Choi ◽  
Cheol Lee ◽  
Ji Yun ◽  
Jongmin Lee

The neuropathology of Parkinson’s disease with dementia (PDD) has been reported to involve heterogeneous and various disease mechanisms. Alpha-synuclein (α-syn) and amyloid beta (Aβ) pathology are associated with the cognitive status of PDD, and NADPH oxidase (NOX) is known to affect a variety of cognitive functions. We investigated the effects of NOX on cognitive impairment and on α-syn and Aβ expression and aggregation in PDD. In the 6-hydroxydopamine (6-OHDA)-injected mouse model, cognitive and motor function, and the levels of α-syn, Aβ, and oligomer A11 after inhibition of NOX4 expression in the hippocampal dentate gyrus (DG) were measured by the Morris water maze, novel object recognition, rotation, and rotarod tests, as well as immunoblotting and immunohistochemistry. After 6-OHDA administration, the death of nigrostriatal dopamine neurons and the expression of α-syn and NOX1 in the substantia nigra were increased, and phosphorylated α-syn, Aβ, oligomer A11, and NOX4 were upregulated in the hippocampus. 6-OHDA dose-dependent cognitive impairment was observed, and the increased cognitive impairment, Aβ expression, and oligomer A11 production in 6-OHDA-treated mice were suppressed by NOX4 knockdown in the hippocampal DG. Our results suggest that increased expression of NOX4 in the hippocampal DG in the 6-OHDA-treated mouse induces Aβ expression and oligomer A11 production, thereby reducing cognitive function.


Sign in / Sign up

Export Citation Format

Share Document