New flame retardant epoxy resins based on cyclophosphazene-derived curing agents

Author(s):  
Zhenwei Miao ◽  
Dongpeng Yan ◽  
Xiaodong Wang ◽  
Xinfang Zhang ◽  
Wenqi Zhou ◽  
...  
2011 ◽  
Vol 328-330 ◽  
pp. 1335-1338 ◽  
Author(s):  
Bing Liang ◽  
Tie Zhu Bao ◽  
Jun Cao ◽  
Xiao Dong Hong

Two halogen-free flame retardant epoxy resins were prepared by diglycidyl ether of bisphenol A (DGEBA) epoxy with two compound hardeners. The aryl phosphinate dianhydride BPAODOPE was used as a hardener and flame retardant when coupled with two curing agents, such as methylhexahydrophthalic anhydride (MeHHPA) and maleic anhydride (MA). The effect of the BPAODOPE contents on the fire resistance, thermal properties and mechanical properties of halogen-free flame-retardant epoxy resins were investigated in detail. The results showed that the phosphorus-containing epoxy resin composites had a higher UL-94 grade and char yield, furthermore, the flame retardation and the char yield of the cured epoxy resins increased with an increase of the phosphorus content, the phosphorus content of 1.75% was enough to achieve UL-94 V-1 grade and the best combination properties for the two composites with different hardeners.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2205
Author(s):  
Qian Li ◽  
Yujie Li ◽  
Yifan Chen ◽  
Qiang Wu ◽  
Siqun Wang

A novel liquid phosphorous-containing flame retardant anhydride (LPFA) with low viscosity was synthesized from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and methyl tetrahydrophthalic anhydride (MeTHPA) and further cured with bisphenol-A epoxy resin E-51 for the preparation of the flame retardant epoxy resins. Both Fourier transform infrared spectroscopy (FT-IR), mass spectrometry (MS) and nuclear magnetic resonance (NMR) measurements revealed the successful incorporation of DOPO on the molecular chains of MeTHPA through chemical reaction. The oxygen index analysis showed that the LPFA-cured epoxy resin exhibited excellent flame retardant performance, and the corresponding limiting oxygen index (LOI) value could reach 31.2%. The UL-94V-0 rating was achieved for the flame retardant epoxy resin with the phosphorus content of 2.7%. With the addition of LPFA, the impact strength of the cured epoxy resins remained almost unchanged, but the flexural strength gradually increased. Meanwhile, all the epoxy resins showed good thermal stability. The glass transition temperature (Tg) and thermal decomposition temperature (Td) of epoxy resin cured by LPFA decreased slightly compared with that of MeTHPA-cured epoxy resin. Based on such excellent flame retardancy, low viscosity at room temperature and ease of use, LPFA showed potential as an appropriate curing agent in the field of electrical insulation materials.


RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 2756-2766
Author(s):  
Yi Zhang ◽  
Weiwei Yang

In this study, a highly effective flame retardant agent, called polybicyclopentaerythritol phosphate-O-4-imino-p-phenylmethane-4-imino-2-chloro-1,3,5-s-triazine (PEDMCD), has been prepared through a direct polycondensation reaction.


1985 ◽  
Vol 22 (8) ◽  
pp. 1101-1107
Author(s):  
Devendra Kumar ◽  
Alka D. Gupta
Keyword(s):  

2014 ◽  
Vol 1053 ◽  
pp. 263-267 ◽  
Author(s):  
Xiu Juan Tian

Thermal stability and thermal degradation kinetics of epoxy resins with 2-(Diphenylphosphinyl)-1, 4-benzenediol were investegated by thermogravimetric analysis (TGA) at different heating rates of 5 K/min, 10 K/min, 20 K/min and 40 K/min. The thermal degradation kinetic mechanism and models of the modified epoxy resins were determined by Coast Redfern method.The results showed that epoxy resins modified with the flame retardant had more thermal stability than pure epoxy resin. The solid-state decomposition mechanism of epoxy resin and the modified epoxy resin corresponded to the controlled decelerating ځ˽̈́˰̵̳͂͆ͅ˼˰̴̱̾˰̸̵̈́˰̵̸̳̱̹̽̾̓̽˰̶̳̹̾̈́̿̾̓ͅ˰̶˸ځ˹˰̵̵͇͂˰̃˸́˽ځ˹2/3. The introduction of phosphorus-containing flame retardant reduced thermal degradation rate of epoxy resins in the primary stage, and promote the formation of carbon layer.


2011 ◽  
Vol 197-198 ◽  
pp. 1346-1349 ◽  
Author(s):  
Fa Chao Wu

Bis(2,6,7-trioxa-l-phosphabicyclo[2.2.2]octane-4-methanol) melaminium salt (Melabis) and microcapsules of Melabis with melamine resin shell as flame retardants (FR), respectively, were synthesized. Their structures were characterized by NMR, IR, SEM, TG and element analysis. 20% weight of microcapsules was doped into epoxy resins (EP) to get 28.5 % of LOI and UL 94 V-0. The heat and smoke release of EP containing microcapsules was valued by cone calorimeter.


1992 ◽  
Vol 45 (4) ◽  
pp. 607-610 ◽  
Author(s):  
N. Galego ◽  
A. Vazquez ◽  
C. C. Riccardi ◽  
R. J. J. Williams

Sign in / Sign up

Export Citation Format

Share Document