Encapsulin nanocages: Protein encapsulation and iron sequestration

2021 ◽  
Vol 448 ◽  
pp. 214188
Author(s):  
Ana V. Almeida ◽  
Ana J. Carvalho ◽  
Alice S. Pereira
2012 ◽  
pp. 3143 ◽  
Author(s):  
Lifeng Kang ◽  
Kochhar ◽  
Chan ◽  
Shui Zou

2021 ◽  
Author(s):  
Nicholas Zervoudis ◽  
Allie Obermeyer

The complex coacervation of proteins with other macromolecules has applications in protein encapsulation and delivery and for determining the function of cellular coacervates. Theoretical or empirical predictions for protein coacervates would enable the design of these coacervates with tunable and predictable structure-function relationships; unfortunately, no such theories exist. To help establish predictive models, the impact of protein-specific parameters on complex coacervation were probed in this study. The complex coacervation of sequence-specific, polypeptide-tagged, GFP variants and a strong synthetic polyelectrolyte was used to evaluate the effects of protein charge patterning on phase behavior. Phase portraits for the protein coacervates demonstrated that charge patterning dictates the protein’s binodal phase boundary. Protein concentrations over 100 mg mL<sup>-1</sup> were achieved in the coacervate phase, with concentrations dependent on the polypeptide sequence. In addition to shifting the binodal phase boundary, polypeptide charge patterning provided entropic advantages over isotropically patterned proteins. Together, these results show that modest changes of only a few amino acids alter the coacervation thermodynamics and can be used to tune the phase behavior of polypeptides or proteins of interest.


2021 ◽  
Vol 50 (1) ◽  
Author(s):  
Thomas Litschel ◽  
Petra Schwille

Giant unilamellar vesicles (GUVs) have gained great popularity as mimicries for cellular membranes. As their sizes are comfortably above the optical resolution limit, and their lipid composition is easily controlled, they are ideal for quantitative light microscopic investigation of dynamic processes in and on membranes. However, reconstitution of functional proteins into the lumen or the GUV membrane itself has proven technically challenging. In recent years, a selection of techniques has been introduced that tremendously improve GUV-assay development and enable the precise investigation of protein–membrane interactions under well-controlled conditions. Moreover, due to these methodological advances, GUVs are considered important candidates as protocells in bottom-up synthetic biology. In this review, we discuss the state of the art of the most important vesicle production and protein encapsulation methods and highlight some key protein systems whose functional reconstitution has advanced the field. Expected final online publication date for the Annual Review of Biophysics, Volume 50 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 886 ◽  
Author(s):  
Filippo Begarani ◽  
Domenico Cassano ◽  
Eleonora Margheritis ◽  
Roberto Marotta ◽  
Francesco Cardarelli ◽  
...  

Although conceptually obvious, the effective delivery of proteins in therapeutic applications is far from being a routine practice. The major limitation is the conservation of protein physicochemical identity during the transport to the target site. In this regard, nanoparticle-based systems offer new intriguing possibilities, provided that (i) the harsh and denaturating conditions typically used for nanoparticle synthesis are avoided or mitigated; and (ii) nanoparticle biocompatibility and degradation (for protein release) are optimized. Here, we tackle these issues by starting from a nanoparticle architecture already tested for small chemical compounds. In particular, silica-shielded liposomes are produced and loaded with a test protein (i.e., Green Fluorescent Protein) in an aqueous environment. We demonstrate promising results concerning protein encapsulation, protection during intracellular trafficking and final release triggered by nanoparticle degradations in acidic organelles. We believe this proof of principle may open new applications and developments for targeted and efficient protein delivery.


2020 ◽  
Vol 10 (3) ◽  
pp. 582-593 ◽  
Author(s):  
Carla B. Roces ◽  
Dennis Christensen ◽  
Yvonne Perrie

AbstractIn the formulation of nanoparticles, poly(lactic-co-glycolic acid) (PLGA) is commonly employed due to its Food and Drug Administration and European Medicines Agency approval for human use, its ability to encapsulate a variety of moieties, its biocompatibility and biodegradability and its ability to offer a range of controlled release profiles. Common methods for the production of PLGA particles often adopt harsh solvents, surfactants/stabilisers and in general are multi-step and time-consuming processes. This limits the translation of these drug delivery systems from bench to bedside. To address this, we have applied microfluidic processes to develop a scale-independent platform for the manufacture, purification and monitoring of nanoparticles. Thereby, the influence of various microfluidic parameters on the physicochemical characteristics of the empty and the protein-loaded PLGA particles was evaluated in combination with the copolymer employed (PLGA 85:15, 75:25 or 50:50) and the type of protein loaded. Using this rapid production process, emulsifying/stabilising agents (such as polyvinyl alcohol) are not required. We also incorporate in-line purification systems and at-line particle size monitoring. Our results demonstrate the microfluidic control parameters that can be adopted to control particle size and the impact of PLGA copolymer type on the characteristics of the produced particles. With these nanoparticles, protein encapsulation efficiency varies from 8 to 50% and is controlled by the copolymer of choice and the production parameters employed; higher flow rates, combined with medium flow rate ratios (3:1), should be adopted to promote higher protein loading (% wt/wt). In conclusion, herein, we outline the process controls for the fabrication of PLGA polymeric nanoparticles incorporating proteins in a rapid and scalable manufacturing process.


2018 ◽  
Vol 24 (7) ◽  
pp. 1493-1502 ◽  
Author(s):  
Jean-Paul Motta ◽  
Thibault Allain ◽  
Luke E Green-Harrison ◽  
Ryan A Groves ◽  
Troy Feener ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document