In-situ operando and ex-situ study on light hydrocarbon-like-diesel and catalyst deactivation kinetic and mechanism study during deoxygenation of sludge oil

2022 ◽  
Vol 429 ◽  
pp. 132206
Author(s):  
G. Abdulkareem-Alsultan ◽  
N. Asikin-Mijan ◽  
Laith K. Obeas ◽  
Robiah Yunus ◽  
Siti Zulaika Razali ◽  
...  
2020 ◽  
Vol 20 (9) ◽  
pp. 5594-5598
Author(s):  
Heejin Lee ◽  
Young-Min Kim ◽  
Sang-Chul Jung ◽  
Young-Kwon Park

The desilication effect of Beta on the catalytic pyrolysis of polyethylene terephthalate (PET) was investigated in this study. Compared to parent Beta, desilicated Beta revealed the higher aromatics formation efficiency due to its larger pore size allowing the efficient diffusion of PET pyrolysis intermediates to the catalyst pore. Compared to the in-situ catalytic pyrolysis, ex-situ catalytic PET pyrolysis over desilicated Beta produced a larger amount of aromatics. The desilicated catalyst could be re-used without catalyst regeneration due to the small extent of catalyst deactivation.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Author(s):  
K. Barmak

Generally, processing of thin films involves several annealing steps in addition to the deposition step. During the annealing steps, diffusion, transformations and reactions take place. In this paper, examples of the use of TEM and AEM for ex situ and in situ studies of reactions and phase transformations in thin films will be presented.The ex situ studies were carried out on Nb/Al multilayer thin films annealed to different stages of reaction. Figure 1 shows a multilayer with dNb = 383 and dAl = 117 nm annealed at 750°C for 4 hours. As can be seen in the micrograph, there are four phases, Nb/Nb3-xAl/Nb2-xAl/NbAl3, present in the film at this stage of the reaction. The composition of each of the four regions marked 1-4 was obtained by EDX analysis. The absolute concentration in each region could not be determined due to the lack of thickness and geometry parameters that were required to make the necessary absorption and fluorescence corrections.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


2017 ◽  
Author(s):  
Younghee Lee ◽  
Daniela M. Piper ◽  
Andrew S. Cavanagh ◽  
Matthias J. Young ◽  
Se-Hee Lee ◽  
...  

<div>Atomic layer deposition (ALD) of LiF and lithium ion conducting (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloys was developed using trimethylaluminum, lithium hexamethyldisilazide (LiHMDS) and hydrogen fluoride derived from HF-pyridine solution. ALD of LiF was studied using in situ quartz crystal microbalance (QCM) and in situ quadrupole mass spectrometer (QMS) at reaction temperatures between 125°C and 250°C. A mass gain per cycle of 12 ng/(cm<sup>2</sup> cycle) was obtained from QCM measurements at 150°C and decreased at higher temperatures. QMS detected FSi(CH<sub>3</sub>)<sub>3</sub> as a reaction byproduct instead of HMDS at 150°C. LiF ALD showed self-limiting behavior. Ex situ measurements using X-ray reflectivity (XRR) and spectroscopic ellipsometry (SE) showed a growth rate of 0.5-0.6 Å/cycle, in good agreement with the in situ QCM measurements.</div><div>ALD of lithium ion conducting (AlF3)(LiF)x alloys was also demonstrated using in situ QCM and in situ QMS at reaction temperatures at 150°C A mass gain per sequence of 22 ng/(cm<sup>2</sup> cycle) was obtained from QCM measurements at 150°C. Ex situ measurements using XRR and SE showed a linear growth rate of 0.9 Å/sequence, in good agreement with the in situ QCM measurements. Stoichiometry between AlF<sub>3</sub> and LiF by QCM experiment was calculated to 1:2.8. XPS showed LiF film consist of lithium and fluorine. XPS also showed (AlF<sub>3</sub>)(LiF)x alloy consists of aluminum, lithium and fluorine. Carbon, oxygen, and nitrogen impurities were both below the detection limit of XPS. Grazing incidence X-ray diffraction (GIXRD) observed that LiF and (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film have crystalline structures. Inductively coupled plasma mass spectrometry (ICP-MS) and ionic chromatography revealed atomic ratio of Li:F=1:1.1 and Al:Li:F=1:2.7: 5.4 for (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film. These atomic ratios were consistent with the calculation from QCM experiments. Finally, lithium ion conductivity (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film was measured as σ = 7.5 × 10<sup>-6</sup> S/cm.</div>


Author(s):  
Hyoung H. Kang ◽  
Michael A. Gribelyuk ◽  
Oliver D. Patterson ◽  
Steven B. Herschbein ◽  
Corey Senowitz

Abstract Cross-sectional style transmission electron microscopy (TEM) sample preparation techniques by DualBeam (SEM/FIB) systems are widely used in both laboratory and manufacturing lines with either in-situ or ex-situ lift out methods. By contrast, however, the plan view TEM sample has only been prepared in the laboratory environment, and only after breaking the wafer. This paper introduces a novel methodology for in-line, plan view TEM sample preparation at the 300mm wafer level that does not require breaking the wafer. It also presents the benefit of the technique on electrically short defects. The methodology of thin lamella TEM sample preparation for plan view work in two different tool configurations is also presented. The detailed procedure of thin lamella sample preparation is also described. In-line, full wafer plan view (S)TEM provides a quick turn around solution for defect analysis in the manufacturing line.


2015 ◽  
Vol 38 (3) ◽  
pp. 235 ◽  
Author(s):  
Eduardo Mendoza-Maya ◽  
Judith Espino-Espino ◽  
Carmen Z. Quiñones-Pérez ◽  
Celestino Flores-López ◽  
Christian Wehenkel ◽  
...  
Keyword(s):  

Picea mexicana Martínez, P. chihuahuana Martínez y P. martinezii Patterson son especies endémicas de México en peligro de extinción. Se presenta una síntesis de su situación actual y una propuesta de manejo para su conservación in situ y ex situ, con base en la diversidad y estructura genética de las poblaciones y la ubicación de las áreas en donde se predice existirá el hábitat climático que les es propicio en el futuro (años 2030, 2060 y 2090; al promediar los modelos Canadiense, Hadley y Geofísica de Fluidos con escenarios de emisiones A y B). Para la conservación in situ se plantea la protección, el incremento de la diversidad genética y la expansión de las tres únicas poblaciones de P. mexicana, las cuatro únicas de P. martinezii y ocho poblaciones designadas prioritarias de las 40 poblaciones de P. chihuahuana, mediante la plantación de individuos originados de otras poblaciones hasta alcanzar un tamaño mínimo de población genéticamente viable (entre 1035 a 3836 individuos). Para la conservación ex situ se propone el establecimiento de poblaciones en sitios fuera del rango de distribución natural de las especies, en donde se ha proyectado que ocurrirá el clima que les es propicio, con al menos 3606 individuos de P. mexicana en el volcán Cofre de Perote, Veracruz; 2431 individuos de P. chihuahuana en el municipio de Guanaceví, Durango; y 3092 individuos de P. martinezii en la región de Tlatlauquitepec, Puebla, con plantas originadas de una mezcla de semillas colectadas de árboles al azar de poblaciones específicas.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 880 ◽  
Author(s):  
Rongchuang Chen ◽  
Haifeng Xiao ◽  
Min Wang ◽  
Jianjun Li

In this work, hot compression experiments of 300M steel were performed at 900–1150 °C and 0.01–10 s−1. The relation of flow stress and microstructure evolution was analyzed. The intriguing finding was that at a lower strain rate (0.01 s−1), the flow stress curves were single-peaked, while at a higher strain rate (10 s−1), no peak occurred. Metallographic observation results revealed the phenomenon was because dynamic recrystallization was more complete at a lower strain rate. In situ compression tests were carried out to compare with the results by ex situ compression tests. Hot working maps representing the influences of strains, strain rates, and temperatures were established. It was found that the power dissipation coefficient was not only related to the recrystallized grain size but was also related to the volume fraction of recrystallized grains. The optimal hot working parameters were suggested. This work provides comprehensive understanding of the hot workability of 300M steel in thermal compression.


2015 ◽  
Vol 2015 (26) ◽  
pp. 5742-5746 ◽  
Author(s):  
Muqing Chen ◽  
Wangqiang Shen ◽  
Lipiao Bao ◽  
Wenting Cai ◽  
Yunpeng Xie ◽  
...  

2021 ◽  
Vol 23 ◽  
pp. 101030
Author(s):  
Kitirote Wantala ◽  
Totsaporn Suwannaruang ◽  
Janthip Palalerd ◽  
Prae Chirawatkul ◽  
Narong Chanlek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document