scholarly journals Qualification of operating conditions to extend oxygen carrier utilization in the scaling up of chemical looping processes

2022 ◽  
Vol 430 ◽  
pp. 132602
Author(s):  
Arturo Cabello ◽  
Alberto Abad ◽  
María T. Izquierdo ◽  
P. Gayán ◽  
Luis F. de Diego ◽  
...  
Author(s):  
Juan Ada´nez ◽  
Francisco Garci´a-Labiano ◽  
Luis F. de Diego ◽  
Ainhoa Plata ◽  
Javier Celaya ◽  
...  

A mathematical model for a bubbling fluidized bed has been developed to optimize the performance of the fuel reactor in chemical looping combustion systems. This model considers both the hydrodynamic of the fluidized bed (dense bed and freeboard) and the kinetics of the oxygen carrier reduction. Although the model is valid for any of the possible oxygen carriers and fuels, the present work has been focused in the use of a carrier, CuO-SiO2, and CH4 as fuel. The shrinking core model has been used to define the particle behavior during their reduction. The simulation of the fuel reactor under different operating conditions was carried out to set the operating conditions and optimize the process. The effect of different design or operating variables as the bed height, the oxygen carrier/fuel ratio, and the gas throughput was analyzed. Finally, a sensitivity analysis to the solid reactivity, the bubble diameter, and to the gas/solid contact efficiency in the freeboard was done. At vigorous fluidization, solid present in the freeboard can strongly contribute to the gas conversion in the fuel reactor. However, the gas/solid contact efficiency in this zone must be determined for each particular case.


Fuel ◽  
2010 ◽  
Vol 89 (11) ◽  
pp. 3399-3409 ◽  
Author(s):  
Cristina Dueso ◽  
Alberto Abad ◽  
Francisco García-Labiano ◽  
Luis F. de Diego ◽  
Pilar Gayán ◽  
...  

2021 ◽  
Vol 286 ◽  
pp. 116507
Author(s):  
Ranjani Siriwardane ◽  
Jarrett Riley ◽  
William Benincosa ◽  
Samuel Bayham ◽  
Michael Bobek ◽  
...  

2021 ◽  
Vol 222 ◽  
pp. 106962
Author(s):  
Stefan Mayrhuber ◽  
Fredrik Normann ◽  
Duygu Yilmaz ◽  
Henrik Leion

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1663
Author(s):  
Laixing Luo ◽  
Xing Zheng ◽  
Jianye Wang ◽  
Wu Qin ◽  
Xianbin Xiao ◽  
...  

Biomass chemical looping gasification (CLG) is a novel gasification technology for hydrogen production, where the oxygen carrier (OC) transfers lattice oxygen to catalytically oxidize fuel into syngas. However, the OC is gradually reduced, showing different reaction activities in the CLG process. Fully understanding the CLG reaction mechanism of fuel molecules on perfect and reduced OC surfaces is necessary, for which the CLG of ethanol using Fe2O3 as the OC was introduced as the probe reaction to perform density functional theory calculations to reveal the decomposition mechanism of ethanol into the synthesis gas (including H2, CH4, ethylene, formaldehyde, acetaldehyde, and CO) on perfect and reduced Fe2O3(001) surfaces. When Fe2O3(001) is reduced to FeO0.375(001), the calculated barrier energy decreases and then increases again, suggesting that the reduction state around FeO(001) favors the catalytic decomposition of ethanol to produce hydrogen, which proves that the degree of reduction has an important effect on the CLG reaction.


Sign in / Sign up

Export Citation Format

Share Document