Highly exfoliated NiPS3 nanosheets as efficient electrocatalyst for high yield ammonia production

2022 ◽  
Vol 430 ◽  
pp. 132649
Author(s):  
Balaraman Vedhanarayanan ◽  
Cheng-chau Chiu ◽  
Jakub Regner ◽  
Zdenek Sofer ◽  
K.C. Seetha Lakshmi ◽  
...  
2015 ◽  
Vol 17 (7) ◽  
pp. 4909-4918 ◽  
Author(s):  
Younes Abghoui ◽  
Anna L. Garden ◽  
Valtýr Freyr Hlynsson ◽  
Snædís Björgvinsdóttir ◽  
Hrefna Ólafsdóttir ◽  
...  

Investigation of transition metal nitrides reveals extremely promising electrocatalysts for high-yield ammonia production in aqueous electrolytes under ambient conditions.


Author(s):  
N. Tempel ◽  
M. C. Ledbetter

Carbon films have been a support of choice for high resolution electron microscopy since the introduction of vacuum evaporation of carbon. The desirable qualities of carbon films and methods of producing them has been extensively reviewed. It is difficult to get a high yield of grids by many of these methods, especially if virtually all of the windows must be covered with a tightly bonded, quality film of predictable thickness. We report here a method for producing carbon foils designed to maximize these attributes: 1) coverage of virtually all grid windows, 2) freedom from holes, wrinkles or folds, 3) good adhesion between film and grid, 4) uniformity of film and low noise structure, 5) predictability of film thickness, and 6) reproducibility.Our method utilizes vacuum evaporation of carbon from a fiber onto celloidin film and grid bars, adhesion of the film complex to the grid by carbon-carbon contact, and removal of the celloidin by acetone dissolution. Materials must be of high purity, and cleanliness must be rigorously maintained.


Author(s):  
Hong-Ming Lin ◽  
C. H. Liu ◽  
R. F. Lee

Polyetheretherketone (PEEK) is a crystallizable thermoplastic used as composite matrix materials in application which requires high yield stress, high toughness, long term high temperature service, and resistance to solvent and radiation. There have been several reports on the crystallization behavior of neat PEEK and of CF/PEEK composite. Other reports discussed the effects of crystallization on the mechanical properties of PEEK and CF/PEEK composites. However, these reports were all concerned with the crystallization or melting processes at or close to atmospheric pressure. Thus, the effects of high pressure on the crystallization of CF/PEEK will be examined in this study.The continuous carbon fiber reinforced PEEK (CF/PEEK) laminate composite with 68 wt.% of fibers was obtained from Imperial Chemical Industry (ICI). For the high pressure experiments, HIP was used to keep these samples under 1000, 1500 or 2000 atm. Then the samples were slowly cooled from 420 °C to 60 °C in the cooling rate about 1 - 2 degree per minute to induce high pressure crystallization. After the high pressure treatment, the samples were scanned in regular DSC to study the crystallinity and the melting temperature. Following the regular polishing, etching, and gold coating of the sample surface, the scanning electron microscope (SEM) was used to image the microstructure of the crystals. Also the samples about 25mmx5mmx3mm were prepared for the 3-point bending tests.


Author(s):  
Xin-Ming Xu ◽  
Ming Xie ◽  
Jiazhu Li ◽  
Mei-Xiang Wang

An exquisite Pybox/Cu(OTf)2-catalyzed asymmetric tandem reaction of tertiary enamides was developed, which enabled the expeditious synthesis of indolizino[8,7-b]indole derivatives in high yield, excellent enantioselectivity and diastereoselectivity.


1983 ◽  
Vol 49 (01) ◽  
pp. 024-027 ◽  
Author(s):  
David Vetterlein ◽  
Gary J Calton

SummaryThe preparation of a monoclonal antibody (MAB) against high molecular weight (HMW) urokinase light chain (20,000 Mr) is described. This MAB was immobilized and the resulting immunosorbent was used to isolate urokinase starting with an impure commercial preparation, fresh urine, spent tissue culture media, or E. coli broth without preliminary dialysis or concentration steps. Monospecific antibodies appear to provide a rapid single step method of purifying urokinase, in high yield, from a variety of biological fluids.


EDIS ◽  
2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Barry L. Tillman

FloRunTM ‘331’ peanut variety was developed by the University of Florida, Institute of Food and Agricultural Sciences, North Florida Research and Education Center near Marianna, Florida.  It was released in 2016 because it combines high yield potential with excellent disease tolerance. FloRunTM ‘331’ has a typical runner growth habit with a semi-prominent central stem and medium green foliage.  It has medium runner seed size with high oleic oil chemistry.


Sign in / Sign up

Export Citation Format

Share Document