scholarly journals C2cd6-encoded CatSperτ targets sperm calcium channel to Ca2+ signaling domains in the flagellar membrane

Cell Reports ◽  
2022 ◽  
pp. 110226
Author(s):  
Jae Yeon Hwang ◽  
Huafeng Wang ◽  
Yonggang Lu ◽  
Masahito Ikawa ◽  
Jean-Ju Chung
1990 ◽  
Vol 96 (1) ◽  
pp. 27-33 ◽  
Author(s):  
R.A. Bloodgood ◽  
N.L. Salomonsky

The Chlamydomonas flagellar surface exhibits a number of dynamic membrane phenomena associated with whole-cell gliding locomotion and the early events in fertilization. Crosslinking of a specific population of flagellar surface-exposed glycoproteins with the lectin concanavalin A or an anti-carbohydrate mouse monoclonal antibody, designated FMG-1, results in a characteristic pattern of glycoprotein redistribution within the plane of the flagellar membrane. Recent evidence suggests that flagellar membrane glycoprotein movements are associated with both whole-cell gliding motility and the early events in mating. It is of interest to determine the transmembrane signaling pathway whereby crosslinking of the external domains of flagellar glycoproteins activates the intraflagellar machinery responsible for translocation of flagellar membrane glycoproteins. The redistribution of flagellar membrane glycoproteins requires micromolar levels of free calcium in the medium; lowering the free calcium concentration to 10(−7) M results in complete but reversible inhibition of redistribution. Redistribution is maximal in the presence of 20 microM free calcium in the medium. Redistribution is inhibited in the presence of 20 microM free calcium by the calmodulin antagonists trifluoperazine, W-7 and calmidazolium, the calcium channel blockers diltiazem, methoxyverapamil (D-600) and barium chloride, and the local anesthetics, lidocaine and procaine. The actions of all of these agents can be interpreted in terms of a requirement for calcium in the signaling mechanism associated with flagellar glycoprotein redistribution. In particular, the requirement for micromolar calcium in the external medium and the effects of specific calcium channel blockers suggest that flagellar membrane glycoprotein crosslinking may induce an increase in calcium influx, which may be the initial trigger for activating the flagellar machinery responsible for active movement of flagellar membrane glycoproteins.


2021 ◽  
Author(s):  
Jae Yeon Hwang ◽  
Huafeng Wang ◽  
Yonggang Lu ◽  
Masahito Ikawa ◽  
Jean-Ju Chung

In mammalian sperm cells, regulation of spatiotemporal Ca2+ signaling relies on the quadrilinear Ca2+ signaling nanodomains in the flagellar membrane. The sperm-specific, multi-subunit CatSper Ca2+ channel, which is crucial for sperm hyperactivated motility and male fertility, organizes the nanodomains. Here, we report CatSperτ, the C2cd6-encoded membrane-associating C2 domain protein, can independently migrate to the flagella and serve as a major targeting component of the CatSper channel complex. CatSperτ loss-of-function in mice demonstrates that it is essential for sperm hyperactivated motility and male fertility. CatSperτ targets the CatSper channel into the quadrilinear nanodomains in the flagella of developing spermatids, whereas it is dispensable for functional channel assembly. CatSperτ interacts with ciliary trafficking machinery in a C2-dependent manner. These findings provide insights into the CatSper channel trafficking to the Ca2+ signaling nanodomains and the shared molecular mechanisms of ciliary and flagellar membrane targeting.


Sign in / Sign up

Export Citation Format

Share Document