The deterministic chaos in the sense of a positive topological entropy is investigated for differential equations with multivalued impulses. Two definitions of topological entropy are examined for three classes of multivalued maps: [Formula: see text]-valued maps, [Formula: see text]-maps and admissible maps in the sense of Górniewicz. The principal tool for its lower estimates and, in particular, its positivity are the Ivanov-type inequalities in terms of the asymptotic Nielsen numbers. The obtained results are then applied to impulsive differential equations via the associated Poincaré translation operators along their trajectories. The main theorems for chaotic differential equations with multivalued impulses are formulated separately on compact subsets of Euclidean spaces and on tori. Several illustrative examples are supplied.