scholarly journals Alloying effect-induced electron polarization drives nitrate electroreduction to ammonia

2021 ◽  
Author(s):  
Haibo Yin ◽  
Zhen Chen ◽  
Shangchao Xiong ◽  
Jianjun Chen ◽  
Chizhong Wang ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Yun Tian ◽  
Oliver Gutfleisch ◽  
Olle Eriksson ◽  
Levente Vitos

AbstractTetragonal ($${\hbox{L1}}_{0}$$ L1 0 ) FeNi is a promising material for high-performance rare-earth-free permanent magnets. Pure tetragonal FeNi is very difficult to synthesize due to its low chemical order–disorder transition temperature ($$\approx {593}$$ ≈ 593  K), and thus one must consider alternative non-equilibrium processing routes and alloy design strategies that make the formation of tetragonal FeNi feasible. In this paper, we investigate by density functional theory as implemented in the exact muffin-tin orbitals method whether alloying FeNi with a suitable element can have a positive impact on the phase formation and ordering properties while largely maintaining its attractive intrinsic magnetic properties. We find that small amount of non-magnetic (Al and Ti) or magnetic (Cr and Co) elements increase the order–disorder transition temperature. Adding Mo to the Co-doped system further enhances the ordering temperature while the Curie temperature is decreased only by a few degrees. Our results show that alloying is a viable route to stabilizing the ordered tetragonal phase of FeNi.


2019 ◽  
Vol 01 (01) ◽  
pp. 39-42
Author(s):  
Rahim Mahammad Rahimov ◽  
◽  
Khalil Firudin Khalilov ◽  

Key words: magnetic field, alternating magnetic field, sinusoidal and pulsating magnetic fields, electron polarization, biological activity


Sign in / Sign up

Export Citation Format

Share Document