Development of multi-level adaptive control and scheduling solutions for shop-floor automation in reconfigurable manufacturing systems

CIRP Annals ◽  
2011 ◽  
Vol 60 (1) ◽  
pp. 449-452 ◽  
Author(s):  
A. Valente ◽  
E. Carpanzano
Materials ◽  
2003 ◽  
Author(s):  
Chengyin Yuan ◽  
Placid Ferreira

At the enterprise level, manufacturing organizations are faced with accelerating technological cycles, global competition and an increasingly mobile work force. The flexibility of an enterprise and its ability to respond to new customer demands governs the competitiveness of the enterprise to changes in its market and in the society in which it operates. The flexibility in production processes must be able to accommodate differing product mixes with the changing availability of a skilled work force. It has been recognized for many years that flexibility on the enterprise shop floor can always be achieved if the resulting cost of product, process and system changeovers are not considered. However, with the increasing competitive pressures on today’s manufacturing enterprise; a highly flexible and reconfigurable manufacturing environment must be achieved at relatively low cost and high work-force productivity while maintaining a competitive advantage. To accomplish this goal the manufacturing enterprise must be able to be reconfigured with an increased level of automation that is scalable and flexible to meet diverse product demands. In this paper, we will introduce EMBench as the design and simulation environment for reconfigurable manufacturing systems. This environment provides a universal GUI (Graphical User Interface) that allows user to design, configure and simulate various resources on the shop floor level. In this paper, we present the resource model, workstation model and cell model and explore their characteristics and behaviors. We also propose the general interface for different models using IEC-61499 function blocks that allow scalable expansion and modular design. We use IEC-61499 function blocks and a service layer architecture to integrate various resources on the enterprise shop floor and achieve flexibility at a low cost. This environment facilitates a modular, component-based design of services for enterprise shop floor control.


2014 ◽  
Vol 556-562 ◽  
pp. 6034-6037
Author(s):  
Dong Man Yu ◽  
Zhi Hua Gao ◽  
Xiao Jing Li ◽  
Di Wang

Reconfigurable manufacturing system is essential for sustainable change, rapid response ability important characteristics, research, development and application of manufacturing system. The main architecture and major characteristics of reconfigurable manufacturing systems is explored. Normally, the quality of RMS can be evaluated by several factors. Firstly, the gross cost of production and reconstruction should be less. Secondly, The time of design and manufacture (ascent time) should be shorter. Thirdly, the utilization ratio of existed resource should reach to the utmost. Finally, the cargo stream planning in common space should keep in optimal condition. At last, The author give an example to shown the RMS, the hydraulic integrated package for a gearshift device in automobile, are mentioned to compare and analyze.


Sign in / Sign up

Export Citation Format

Share Document