T113. The changes in motor cortex localisation and organisation in motor eloquent tumorous brain lesions detected by navigated transcranial magnetic stimulation

2018 ◽  
Vol 129 ◽  
pp. e46
Author(s):  
Irena Holeckova ◽  
Jiri Vales ◽  
Jan Mracek ◽  
Petr Rihanek ◽  
Roman Moucek ◽  
...  
Neurosurgery ◽  
2011 ◽  
Vol 70 (5) ◽  
pp. 1248-1257 ◽  
Author(s):  
Thomas Picht ◽  
Juliane Schulz ◽  
Michael Hanna ◽  
Sein Schmidt ◽  
Olaf Suess ◽  
...  

Abstract BACKGROUND: Brain tumor surgery near the motor cortex requires careful planning to achieve the optimal balance between completeness of tumor resection and preservation of motor function. Navigated transcranial magnetic stimulation (nTMS) can be used to map functionally essential motor areas preoperatively. OBJECTIVE: To evaluate how much influence, benefit, and impact nTMS has on the surgical planning for tumors near the motor cortex. METHODS: This study reviewed the records of 73 patients with brain tumors in or near the motor cortex, mapped preoperatively with nTMS. The surgical team prospectively classified how much influence the nTMS results had on the surgical planning. Stepwise regression analysis was used to explore which factors predict the amount of influence, benefit, and impact nTMS has on the surgical planning. RESULTS: The influence of nTMS on the surgical planning was as follows: it confirmed the expected anatomy in 22% of patients, added knowledge that was not used in 23%, added awareness of high-risk areas in 27%, modified the approach in 16%, changed the planned extent of resection in 8%, and changed the surgical indication in 3%. CONCLUSION: nTMS had an objective benefit on the surgical planning in one fourth of the patients and a subjective benefit in an additional half of the patients. It had an impact on the surgery itself in just more than half of the patients. By mapping the spatial relationship between the tumor and functional motor cortex, nTMS improves surgical planning for tumors in or near the motor cortex.


Author(s):  
Severin Schramm ◽  
Aashna Mehta ◽  
Kurtis I. Auguste ◽  
Phiroz E. Tarapore

OBJECTIVE Navigated transcranial magnetic stimulation (nTMS) is a noninvasive technique often used for localization of the functional motor cortex via induction of motor evoked potentials (MEPs) in neurosurgical patients. There has, however, been no published record of its application in pediatric epilepsy surgery. In this study, the authors aimed to investigate the feasibility of nTMS-based motor mapping in the preoperative diagnostic workup within a population of children with medically refractory epilepsy. METHODS A single-institution database was screened for preoperative nTMS motor mappings obtained in pediatric patients (aged 0 to 18 years, 2012 to present) with medically refractory epilepsy. Patient clinical data, demographic information, and mapping results were extracted and used in statistical analyses. RESULTS Sixteen patients met the inclusion criteria, 15 of whom underwent resection. The median age was 9 years (range 0–17 years). No adverse effects were recorded during mapping. Specifically, no epileptic seizures were provoked via nTMS. Recordings of valid MEPs induced by nTMS were obtained in 10 patients. In the remaining patients, no MEPs could be elicited. Failure to generate MEPs was associated significantly with younger patient age (r = 0.8020, p = 0.0001863). The most frequent seizure control outcome was Engel Epilepsy Surgery Outcome Scale class I (9 patients). CONCLUSIONS Navigated TMS is a feasible, effective, and well-tolerated method for mapping the motor cortex of the upper and lower extremities in pediatric patients with epilepsy. Patient age modulates elicitability of MEPs, potentially reflecting various stages of myelination. Successful motor mapping has the potential to add to the existing presurgical diagnostic workup in this population, and further research is warranted.


2013 ◽  
Vol 34 (4) ◽  
pp. E3 ◽  
Author(s):  
Satoshi Takahashi ◽  
Peter Vajkoczy ◽  
Thomas Picht

Object Navigated transcranial magnetic stimulation (nTMS) is a novel technology in the field of neurosurgery for noninvasive delineation of cortical functional topography. This study addresses the spatial accuracy and clinical usefulness of nTMS in brain tumor surgery in or near the motor cortex based on a systematic review of observational studies. Methods A systematic search retrieved 11 reports published up to October 2012 in which adult patients were examined with nTMS prior to surgery. Quality criteria consisted of documentation of the influence of nTMS brain mapping on clinical decision making in a standardized prospective manner and/or performance of intraoperative direct electrical stimulation (DES) and comparison with nTMS results. Cross-observational assessment of nTMS accuracy was established by calculating a weighted mean distance between nTMS and DES. Results All studies reviewed in this article concluded that nTMS correlated well with the “gold standard” of DES. The mean distance between motor cortex identified on nTMS and DES by using the mean distance in 81 patients described in 6 quantitatively evaluated studies was 6.18 mm. The nTMS results changed the surgical strategy based on anatomical imaging alone in 25.3% of all patients, based on the data obtained in 87 patients in 2 studies. Conclusions The nTMS technique spatially correlates well with the gold standard of DES. Its functional information benefits surgical decision making and changes the treatment strategy in one-fourth of cases.


Sign in / Sign up

Export Citation Format

Share Document