Effect of low wall shear stress on the morphology of endothelial cells and its evaluation indicators

Author(s):  
Yuqing Suna ◽  
Bo Zhanga ◽  
Lianghua Xiaa
2021 ◽  
Vol 22 (11) ◽  
pp. 5635
Author(s):  
Katharina Urschel ◽  
Miyuki Tauchi ◽  
Stephan Achenbach ◽  
Barbara Dietel

In the 1900s, researchers established animal models experimentally to induce atherosclerosis by feeding them with a cholesterol-rich diet. It is now accepted that high circulating cholesterol is one of the main causes of atherosclerosis; however, plaque localization cannot be explained solely by hyperlipidemia. A tremendous amount of studies has demonstrated that hemodynamic forces modify endothelial athero-susceptibility phenotypes. Endothelial cells possess mechanosensors on the apical surface to detect a blood stream-induced force on the vessel wall, known as “wall shear stress (WSS)”, and induce cellular and molecular responses. Investigations to elucidate the mechanisms of this process are on-going: on the one hand, hemodynamics in complex vessel systems have been described in detail, owing to the recent progress in imaging and computational techniques. On the other hand, investigations using unique in vitro chamber systems with various flow applications have enhanced the understanding of WSS-induced changes in endothelial cell function and the involvement of the glycocalyx, the apical surface layer of endothelial cells, in this process. In the clinical setting, attempts have been made to measure WSS and/or glycocalyx degradation non-invasively, for the purpose of their diagnostic utilization. An increasing body of evidence shows that WSS, as well as serum glycocalyx components, can serve as a predicting factor for atherosclerosis development and, most importantly, for the rupture of plaques in patients with high risk of coronary heart disease.


2019 ◽  
Vol 11 (10) ◽  
pp. 999-1003 ◽  
Author(s):  
Michael R Levitt ◽  
Christian Mandrycky ◽  
Ashley Abel ◽  
Cory M Kelly ◽  
Samuel Levy ◽  
...  

ObjectivesTo study the correlation between wall shear stress and endothelial cell expression in a patient-specific, three-dimensional (3D)-printed model of a cerebral aneurysm.Materials and methodsA 3D-printed model of a cerebral aneurysm was created from a patient’s angiogram. After populating the model with human endothelial cells, it was exposed to media under flow for 24 hours. Endothelial cell morphology was characterized in five regions of the 3D-printed model using confocal microscopy. Endothelial cells were then harvested from distinct regions of the 3D-printed model for mRNA collection and gene analysis via quantitative polymerase chain reaction (qPCR.) Cell morphology and mRNA measurement were correlated with computational fluid dynamics simulations.ResultsThe model was successfully populated with endothelial cells, which survived under flow for 24 hours. Endothelial morphology showed alignment with flow in the proximal and distal parent vessel and aneurysm neck, but disorganization in the aneurysm dome. Genetic analysis of endothelial mRNA expression in the aneurysm dome and distal parent vessel was compared with the proximal parent vessels. ADAMTS-1 and NOS3 were downregulated in the aneurysm dome, while GJA4 was upregulated in the distal parent vessel. Disorganized morphology and decreased ADAMTS-1 and NOS3 expression correlated with areas of substantially lower wall shear stress and wall shear stress gradient in computational fluid dynamics simulations.ConclusionsCreating 3D-printed models of patient-specific cerebral aneurysms populated with human endothelial cells is feasible. Analysis of these cells after exposure to flow demonstrates differences in both cell morphology and genetic expression, which correlate with areas of differential hemodynamic stress.


2019 ◽  
Vol 5 (2) ◽  
Author(s):  
Hila Zukerman ◽  
Maria Khoury ◽  
Yosi Shammay ◽  
Josué Sznitman ◽  
Noah Lotan ◽  
...  

Author(s):  
Leonie Rouleau ◽  
Joanna Rossi ◽  
Jean-Claude Tardif ◽  
Rosaire Mongrain ◽  
Richard L. Leask

Endothelial cells (ECs) are believed to respond differentially to hemodynamic forces in the vascular tree. Once atherosclerotic plaque has formed in a vessel, the obstruction creates complex spatial gradients in wall shear stress (WSS). In vitro models have used mostly unrealistic and simplified geometries, which cannot reproduce accurately physiological conditions. The objective of this study was to expose ECs to the complex WSS pattern created by an asymmetric stenosis. Endothelial cells were grown and exposed for different times to physiological steady flows in straight dynamic controls and in idealized asymmetric stenosis models. Cell morphology was noticeably different in the regions with spatial WSS gradients, being more randomly oriented and of cobblestone shape. Inflammatory molecule expression was also altered by exposure to shear and endothelial nitric oxide synthase (eNOS) was upregulated by its presence. A regional response in terms of inflammation was observed through confocal microscopy. This work provides a more realistic model to study endothelial cell response to spatial and temporal WSS gradients that are present in vivo and is an important advancement towards a better understanding of the mechanisms involved in coronary artery disease.


Author(s):  
Leonie Rouleau ◽  
Monica Farcas ◽  
Jean-Claude Tardif ◽  
Rosaire Mongrain ◽  
Richard Leask

Endothelial cell (EC) dysfunction has been linked to atherosclerosis through their response to hemodynamic forces. Flow in stenotic vessels creates complex spatial gradients in wall shear stress. In vitro studies examining the effect of shear stress on endothelial cells have used unrealistic and simplified models, which cannot reproduce physiological conditions. The objective of this study was to expose endothelial cells to the complex shear shear pattern created by an asymmetric stenosis. Endothelial cells were grown and exposed for different times to physiological steady flow in straight dynamic controls and in idealized asymmetric stenosis models. Cells subjected to 1D flow aligned with flow direction and had a spindle-like shape when compared to static controls. Endothelial cell morphology was noticeable different in the regions with a spatial gradient in wall shear stress, being more randomly oriented and of cobblestone shape. This occurred despite the presence of an increased magnitude in shear stress. No other study to date has described this morphology in the presence of a positive wall shear stress gradient or gradient of significant shear magnitude. This technique provides a more realistic model to study endothelial cell response to spatial and temporal shear stress gradients that are present in vivo and is an important advancement towards a better understanding of the mechanisms involved in coronary artery disease.


2018 ◽  
Vol 12 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Yan-Xia Wang ◽  
Hai-Bin Liu ◽  
Peng-Song Li ◽  
Wen-Xue Yuan ◽  
Bo Liu ◽  
...  

2010 ◽  
Vol 132 (8) ◽  
Author(s):  
Leonie Rouleau ◽  
Monica Farcas ◽  
Jean-Claude Tardif ◽  
Rosaire Mongrain ◽  
Richard L. Leask

Endothelial cells are known to respond to hemodynamic forces. Their phenotype has been suggested to differ between atheroprone and atheroprotective regions of the vasculature, which are characterized by the local hemodynamic environment. Once an atherosclerotic plaque has formed in a vessel, the obstruction creates complex spatial gradients in wall shear stress. Endothelial cell response to wall shear stress may be linked to the stability of coronary plaques. Unfortunately, in vitro studies of the endothelial cell involvement in plaque stability have been limited by unrealistic and simplified geometries, which cannot reproduce accurately the hemodynamics created by a coronary stenosis. Hence, in an attempt to better replicate the spatial wall shear stress gradient patterns in an atherosclerotic region, a three dimensional asymmetric stenosis model was created. Human abdominal aortic endothelial cells were exposed to steady flow (Re=50, 100, and 200 and τ=4.5 dyn/cm2, 9 dyn/cm2, and 18 dyn/cm2) in idealized 50% asymmetric stenosis and straight/tubular in vitro models. Local morphological changes that occur due to magnitude, duration, and spatial gradients were quantified to identify differences in cell response. In the one dimensional flow regions, where flow is fully developed and uniform wall shear stress is observed, cells aligned in flow direction and had a spindlelike shape when compared with static controls. Morphological changes were progressive and a function of time and magnitude in these regions. Cells were more randomly oriented and had a more cobblestone shape in regions of spatial wall shear stress gradients. These regions were present, both proximal and distal, at the stenosis and on the wall opposite to the stenosis. The response of endothelial cells to spatial wall shear stress gradients both in regions of acceleration and deceleration and without flow recirculation has not been previously reported. This study shows the dependence of endothelial cell morphology on spatial wall shear stress gradients and demonstrates that care must be taken to account for altered phenotype due to geometric features. These results may help explain plaque stability, as cells in shoulder regions near an atherosclerotic plaque had a cobblestone morphology indicating that they may be more permeable to subendothelial transport and express prothrombotic factors, which would increase the risk of atherothrombosis.


2012 ◽  
Vol 302 (8) ◽  
pp. C1109-C1118 ◽  
Author(s):  
Jennifer M. Dolan ◽  
Fraser J. Sim ◽  
Hui Meng ◽  
John Kolega

Chronic high flow can induce arterial remodeling, and this effect is mediated by endothelial cells (ECs) responding to wall shear stress (WSS). To assess how WSS above physiological normal levels affects ECs, we used DNA microarrays to profile EC gene expression under various flow conditions. Cultured bovine aortic ECs were exposed to no-flow (0 Pa), normal WSS (2 Pa), and very high WSS (10 Pa) for 24 h. Very high WSS induced a distinct expression profile compared with both no-flow and normal WSS. Gene ontology and biological pathway analysis revealed that high WSS modulated gene expression in ways that promote an anti-coagulant, anti-inflammatory, proliferative, and promatrix remodeling phenotype. A subset of characteristic genes was validated using quantitative polymerase chain reaction: very high WSS upregulated ADAMTS1 (a disintegrin and metalloproteinase with thrombospondin motif-1), PLAU (urokinase plasminogen activator), PLAT (tissue plasminogen activator), and TIMP3, all of which are involved in extracellular matrix processing, with PLAT and PLAU also contributing to fibrinolysis. Downregulated genes included CXCL5 and IL-8 and the adhesive glycoprotein THBS1 (thrombospondin-1). Expressions of ADAMTS1 and uPA proteins were assessed by immunhistochemistry in rabbit basilar arteries experiencing increased flow after bilateral carotid artery ligation. Both proteins were significantly increased when WSS was elevated compared with sham control animals. Our results indicate that very high WSS elicits a unique transcriptional profile in ECs that favors particular cell functions and pathways that are important in vessel homeostasis under increased flow. In addition, we identify specific molecular targets that are likely to contribute to adaptive remodeling under elevated flow conditions.


The Analyst ◽  
2021 ◽  
Author(s):  
Jingtong Na ◽  
Siyu Hu ◽  
Chundong Xue ◽  
Yanxia Wang ◽  
Kejie Chen ◽  
...  

To reproduce hemodynamic stress microenvironments of endothelial cells in vitro is of vital significance, by which one could exploit quantitative impact of hemodynamic stresses on endothelial function and seek innovative...


Sign in / Sign up

Export Citation Format

Share Document