Physiological effects induced by stimulation of cutaneous sensory nerves, with a focus on oxytocin

2022 ◽  
Vol 43 ◽  
pp. 159-166
Author(s):  
Kerstin Uvnäs Moberg ◽  
Maria Petersson
Biochemistry ◽  
2003 ◽  
Vol 42 (22) ◽  
pp. 6904-6911 ◽  
Author(s):  
D. W. Sandall ◽  
N. Satkunanathan ◽  
D. A. Keays ◽  
M. A. Polidano ◽  
X. Liping ◽  
...  

1992 ◽  
Vol 72 (4) ◽  
pp. 1563-1570 ◽  
Author(s):  
G. Piedimonte ◽  
J. I. Hoffman ◽  
W. K. Husseini ◽  
W. L. Hiser ◽  
J. A. Nadel

Stimulation of sensory nerves in the airway mucosa causes local release of the neuropeptides substance P and calcitonin gene-related peptide (CGRP). In this study we used a modification of the reference-sample microsphere technique to measure changes in regional blood flow and cardiac output distribution produced in the rat by substance P, CGRP, and capsaicin (a drug that releases endogenous neuropeptides from sensory nerves). Three sets of microspheres labeled with different radionuclides were injected into the left ventricle of anesthetized F344 rats before, immediately after, and 5 min after left ventricular injections of capsaicin, substance P, or CGRP. The reference blood sample was withdrawn from the abdominal aorta and was simultaneously replaced with 0.9% NaCl at 37 degrees C. We found that stimulation of sensory nerves with a low dose of capsaicin causes a large and selective increase in microvascular blood flow in the extrapulmonary airways. The effect of capsaicin is mimicked by systemic injection of substance P but not by CGRP, suggesting that substance P is the main agent of neurogenic vasodilation in rat airways.


2001 ◽  
Vol 204 (13) ◽  
pp. 2265-2275 ◽  
Author(s):  
Michael Gebhardt ◽  
Hans-Willi Honegger

SUMMARY We investigated five different descending brain interneurons with dendritic arborizations in the deutocerebrum in the crickets Gryllus bimaculatus and G. campestris. These interneurones convey specific antennal mechanosensory information to the ventral nerve cord and all responded to forced antennal movements. These interneurones coded for velocity and showed preferences for distinct sectors of the total range of antennal movements. Their axons descended into the posterior connective either ipsilateral or contalateral to the cell body. Electrical stimulation of sensory nerves indicated that the interneurons received input from different afferents of the two antennal base segments. One interneuron had a particularly large axon with a conduction velocity of 4.4ms−1. This was the only one of the five interneurons that also received visual input. Its activity was reduced during voluntary antennal movements. The reduction in activity occurred even after de-efferentation of the antenna, indicating that it had a central origin. Although we do not have experimental evidence for behavioural roles for the descending antennal mechanosensory interneurons, the properties described here suggest an involvement in the perception of objects in the path of the cricket.


2008 ◽  
Vol 117 (10) ◽  
pp. 749-752 ◽  
Author(s):  
Jeong-Soo Woo ◽  
Jagdeep S. Hundal ◽  
Clarence T. Sasaki ◽  
Mikhail W. Abdelmessih ◽  
Stephen P. Kelleher

Objectives: The aim of this study was to identify a panel of sensory nerves capable of eliciting an evoked glottic closure reflex (GCR) and to quantify the glottic closing force (GCF) of these responses in a porcine model. Methods: In 5 pigs, the internal branch of the superior laryngeal nerve (iSLN) and the trigeminal, pharyngeal plexus, glossopharyngeal, radial, and intercostal nerves were surgically isolated and electrically stimulated. During stimulation of each nerve, the GCR was detected by laryngeal electromyography and the GCF was measured with a pressure transducer. Results: The only nerve that elicited the GCR in the 5 pigs was the iSLN. The average GCF was 288.9 mm Hg. Conclusions: This study demonstrates that the only afferent nerve that elicits the GCR in pigs is the iSLN, and that it should remain the focus of research for the rehabilitation of patients with absent or defective reflex vocal fold adduction.


1977 ◽  
Vol 86 (1) ◽  
pp. 30-36 ◽  
Author(s):  
Masafumi Suzuki ◽  
Clarence T. Sasaki

Various types of sensory stimuli may influence reflex laryngeal adduction. The recurrent laryngeal nerve responses evoked by single shock and repetitive electrical stimulation of a number of sensory nerves have been neurophysiologically observed in twenty-five adult cats. Stimulation of major cranial afferents produces strong adductor responses. The magnitude of these evoked responses is approached only by stimulation of the splanchnic nerve in the abdomen. On the other hand, comparable stimulation of special sensory and spinal somatic sensory nerves produces rapidly attenuated evoked adductor responses. We postulate that while these latter adductor responses may be insufficient to produce strong glottic closure, they may effectively modify phonatory function of the larynx. We have, therefore, attempted to demonstrate the effects of various sensory elicitations upon reflex laryngeal adduction as they may compositely influence both protective and phonatory control of this organ system.


1990 ◽  
Vol 68 (6) ◽  
pp. 2305-2311 ◽  
Author(s):  
J. N. Baraniuk ◽  
M. L. Kowalski ◽  
M. A. Kaliner

Electrical stimulation of rat sensory nerves produces cutaneous vasodilation and plasma protein extravasation, a phenomenon termed “neurogenic inflammation”. Rat skin on the dorsum of the paw developed neurogenic inflammation after electrical stimulation of the saphenous nerve. In tissue sections, the extravasation of the supravital dye monastral blue B identified permeable vessels. Mast cells were identified by toluidine blue stain. Permeable vessels were significantly more dense in the superficial 120 microns of the dermis than in the deeper dermis, whereas mast cells were significantly more frequent in the deeper dermis. The relationships between nociceptive sensory nerve fibers, permeable vessels, and mast cells were examined by indirect immunohistochemistry for calcitonin gene-related peptide (CGRP), neurokinin A (NKA), and substance P (SP). CGRP-, NKA-, and SP-containing nerves densely innervated the superficial dermis and appeared to innervate the vessels that became permeable during neurogenic inflammation. In contrast, mast cells were not associated with either permeable vessels or nerve fibers. These data suggest that electrical stimulation of rat sensory nerves produces vascular permeability by inducing the release of neuropeptides that may directly stimulate the superficial vascular bed. Mast cells may not be involved in this stage of cutaneous neurogenic inflammation in rat skin.


Sign in / Sign up

Export Citation Format

Share Document