Effect of polyhedral oligomeric silsesquioxane on combustion performance of HTPB propellants

2022 ◽  
Vol 238 ◽  
pp. 111856
Author(s):  
Jiaqi Ren ◽  
Han Shi ◽  
Hanying Du ◽  
Jianmin Li ◽  
Rongjie Yang
2002 ◽  
Author(s):  
Brent Viers ◽  
Shawn Phillips ◽  
Timothy Haddad ◽  
Alan Esker ◽  
Joe Polidan

2020 ◽  
Vol 26 (26) ◽  
pp. 3147-3160
Author(s):  
Saeedeh Ahmadipour ◽  
Jaleh Varshosaz ◽  
Batool Hashemibeni ◽  
Leila Safaeian ◽  
Maziar Manshaei

Background: Polyhedral oligomeric silsesquioxane (POSS) is a monomer with silicon structure and an internal nanometric cage. Objective: The purpose of this study was to provide an injectable hydrogel that could be easily located in open or closed bone fractures and injuries, and also to reduce the possible risks of infections caused by bone graft either as an allograft or an autograft. Methods: Various formulations of temperature sensitive hydrogels containing hydroxyapatite, Gelrite, POSS and platelets rich plasma (PRP), such as the co-gelling agent and cell growth enhancer, were prepared. The hydrogels were characterized for their injectability, gelation time, phase transition temperature and viscosity. Other physical properties of the optimized formulation including compressive stress, compressive strain and Young’s modulus as mechanical properties, as well as storage and loss modulus, swelling ratio, biodegradation behavior and cell toxicity as rheometrical parameters were studied on human osteoblast MG-63 cells. Alizarin red tests were conducted to study the qualitative and quantitative osteogenic capability of the designed scaffold, and the cell adhesion to the scaffold was visualized by scanning electron microscopy. Results: The results demonstrated that the hydrogel scaffold mechanical force and injectability were 3.34±0.44 Mpa and 12.57 N, respectively. Moreover, the scaffold showed higher calcium granules production in alizarin red staining compared to the control group. The proliferation of the cells in G4.5H1P0.03PRP10 formulation was significantly higher than in other formulations (p<0.05). Conclusion: The optimized Gelrite/Hydroxyapatite/POSS/PRP hydrogel scaffold has useful impacts on osteoblasts activity, and may be beneficial for local drug delivery in complications including a break or bone loss.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 316-326
Author(s):  
Bing Wang ◽  
Minxian Shi ◽  
Jie Ding ◽  
Zhixiong Huang

Abstract In this work, octamercapto polyhedral oligomeric silsesquioxane (POSS-8SH) and octaphenol polyhedral oligomeric silsesquioxane (POSS-8Phenol) were successfully synthetized. POSS-8Phenol was added into the synthesis process of liquid thermoset phenolic resin (PR) to obtain POSS-modified phenolic resin (POSS-PR). Chemical structures of POSS-8SH, POSS-8Phenol, and POSS-PR were confirmed by FTIR and 1H-NMR. TG and DTG analysis under different atmosphere showed that char yield of POSS-PR at 1,000°C increased from 58.6% to 65.2% in N2, which in air increased from 2.3% to 26.9% at 700°C. The maximum pyrolysis temperature in air increased from 543°C to 680°C, which meant better anti-oxidation properties. XRD results confirmed both POSS-8Phenol and POSS-PR-generated crystalline SiO2 in air, which could explain the improvement of anti-oxidation properties. SEM showed that the POSS-PR had phase separation during curing process. Finally, carbon fiber fabric-reinforced POSS-PR (C-POSS-PR) was prepared to verify the anti-oxidation properties of POSS-PR.


Nanoscale ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 2982-2994
Author(s):  
Gang Wei ◽  
Kezhen Zhang ◽  
Yuanlong Gu ◽  
Shanyi Guang ◽  
Jihong Feng ◽  
...  

Octathiol POSS was used to connect PEG-400, hexene, folic acid, fluorescein, and thioguanine using a simple and efficient photo-initiated one-pot method to prepare multifunctional molecules, which have targeted imaging and therapeutic functions.


Sign in / Sign up

Export Citation Format

Share Document